
© 2001 Wolfgang Theiss

SPRAY

Note:

To change the product logo for your ow n print manual or

PDF, click "Tools > Manual Designer" and modify the print

manual template.

Title page 1
Use this page to introduce the product

by Wolfgang Theiss

This is "Title Page 1" - you may use this page to introduce
your product, show title, author, copyright, company logos,
etc.

This page intentionally starts on an odd page, so that it is on
the right half of an open book from the readers point of view.
This is the reason why the previous page was blank (the
previous page is the back side of the cover)

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: January 2016 in (whereever you are located)

SPRAY

© 2001 Wolfgang Theiss

Publisher
Special thanks to:

All the people who contributed to this document, to mum and dad
and grandpa, to my sisters and brothers and mothers in law, to our
secretary Kathrin, to the graphic artist who created this great product
logo on the cover page (sorry, don't remember your name at the
moment but you did a great work), to the pizza service down the
street (your daily Capricciosas saved our lives), to the copy shop
where this document will be duplicated, and and and...

Last not least, we want to thank EC Software who wrote this great
help tool called HELP & MANUAL which printed this document.

Managing Editor

Technical Editors

Cover Designer

...enter name...

...enter name...

...enter name...

...enter name...

...enter name...

Production

...enter name...

Team Coordinator

...enter name...

SPRAY4

© 2001 Wolfgang Theiss

Table of Contents

Foreword 7

Part I Introduction 8

... 81 About SPRAY

... 92 Overview

.. 9Why using spectral ray tracing?

.. 11How to find how it works

.. 11The new user-interface of version 2.4

.. 18SPRAY algorithm

... 18Principle

... 19Simulation logic

... 21General properties of SPRAY objects

Part II Optical constants 22

... 221 Optical constants

Part III Scatterers 23

... 231 Overview

... 242 General scatterers

... 253 Mie scatterers

... 274 Extended Mie scatterers

... 325 Fluorescent scatterers

... 366 Fluorescent Mie scatterers

... 367 Composite scatterers

... 388 The RT file format

... 399 The View_RT utility

Part IV Interfaces 43

... 431 Overview

... 432 Pre-defined interfaces

... 443 Ideal diffusor

... 464 Specular and diffuse reflection

... 475 Layer stacks

Part V Geometric objects 56

... 561 Overview

... 582 Light sources

.. 58Overview

.. 58Point light source

.. 60Rectangular light source

.. 62Circular light source

5Contents

5

© 2001 Wolfgang Theiss

.. 64Volume light source

.. 65Complex light source

... 673 Detectors

.. 67Surface detectors

... 67Rectangular detector

... 71Screen

... 76Arrays

... 76Linear array

... 79Spherical detector arrays

.. 85Volume detectors

... 85Grave

... 85Cemetery

... 85Absorbing material

... 854 Interface objects

.. 85Overview

.. 86Rectangular interface

.. 88Triangle

.. 89Circle

.. 90Sphere

.. 90Sphere segment

.. 92Cylinder (closed)

.. 94Cylinder (open)

.. 94Cone

.. 96Rectangular box

.. 97Prism

.. 99ATR crystal

.. 101Ellipsoid segment

.. 103Paraboloid segment

.. 106Circular aperture

.. 106Converging lens

.. 108Diverging lens

.. 111User-defined surface: Rectangular basis

.. 113User-defined surface: Circular basis

.. 115Periodic surface texture

.. 122Complex objects

... 122Complex objects: Introduction

... 125Complex objects: Subobject types

... 127Complex objects: Creating input data

... 129Importing objects from CAD programs

... 1335 Special objects

.. 133Overview

.. 133Polarizer

Part VI Cameras 134

... 1341 Overview

... 1342 Rendered view

Part VII Simulation options 140

... 1401 Spectral range and angle resolution

... 1412 How many rays do you need?

... 1423 Start options

SPRAY6

© 2001 Wolfgang Theiss

Part VIII Distributed computing 143

... 1431 Overview

... 1442 Master PC

... 1453 Client PCs: The tool NIGHTSHIFT

... 1474 Strategy for distributed computing

... 1485 OLE automation demo

Part IX OLE automation 150

... 1501 Overview

... 1502 Handling the OLE server

... 1513 Object parameters

... 1544 Simulation parameters

... 1555 Retrieving results

... 1556 Video generation

.. 155Video generation

.. 159Demo video

Part X Automated parameter fitting 160

... 1601 Introduction

... 1602 Step-by-step example

.. 160SPRAY model

.. 163Starting configuration

.. 164Preparing the parameter fit

.. 169Running the fit

Part XI References 172

... 1721 References

Index 173

Foreword

This is just another title page
placed between table of contents

and topics

7Foreword

© 2001 Wolfgang Theiss

SPRAY8

© 2001 Wolfgang Theiss

1 Introduction

1.1 About SPRAY

Spectral Ray Tracing

ã W.Theiss

W. Theiss – Hard- and Software
Dr.-Bernhard-Klein-Str. 110, D-52078 Aachen, Germany
Phone: + 49 241 5661390 Fax: + 49 241 9529100
e-mail: theiss@mtheiss.com web: www.mtheiss.com

August 2008

This text was written using the program Help&Manual (from EC Software). With this software we
produce the printed manual as well as the online help, PDF files and HTML code for internet
documents - with exactly the same text input! This is a very productive feature and makes the
development of the documentation quite easy. However, for this reason the printed manual
sometimes contains some 'strange' text fragments which seem to have no relation to the rest of the
text. These might be hypertext jumps in the online help system which - of course - loose their
function in the printed version of the manual.

Start here!

Introduction 9

© 2001 Wolfgang Theiss

1.2 Overview

1.2.1 Why using spectral ray tracing?

A complete simulation of optical setups following the path of the radiation from the light source to the
detector(s) can be useful in several situations, in particular in the design phase of an arrangement or
to investigate an unexpected behaviour occuring in already existing components.
The very realistic simulations of optical spectra recorded in standard setups like external or internal
reflectance or transmittance that can be done by the SCOUT software are based on some shortcuts
which are good approximations in most cases. SCOUT works with a well defined, perfectly parallel
incoming beam of radiation and assumes that all the radiation being reflected or transmitted reaches
the detector, or - at least - that the normalization procedure in the experiment efficiently takes into
account all loss effects.
Nevertheless, sometimes it is not possible to take this simple road and one has to deal with effects
which cannot be taken into account straightforwardly. Here is a simple example.A light source on the
left side illuminates the side of a solid cylinder with known refractive index. The radiation is emitted
into a cone with a given opening angle. How much radiation comes out at the right side of the
cylinder?

Well, it's not so hard. First compute the reflectance and transmittance of the vacuum-cylinder
interface for various angles of incidence and polarizations. Then try to find out which angles of
incidence occur with which weight and do a reasonable averaging. Then you know how much
radiation enters the cylinder. Inside the cylinder total reflection occurs and no radiation is lost - unless
some fraction of the light is incident at angles above the critical angle. How much is that? Well, the
surviving radiation hits the right end of the cylinder and escapes. Unless it is reflected back to the left.
Write down the transmitted amount and follow the reflected one which might be reflected at the left
side again and come back ...
If you agree that this back and forth of radiation (that gets more and more complicated the longer
you think about it) should be followed by a computer you are ready for SPRAY. You tell the
program what objects do you have, how they are arranged and what you want to know, and then
SPRAY sends for you photon after photon into the setup and records what happens to them.
In our example you could place a screen to the right of the cylinder,

SPRAY10

© 2001 Wolfgang Theiss

send a few thousand rays and see after a few seconds the distribution of radiation:

The throughput of the given setup is 91.6 %.
You can do this kind of analysis with frequency dependent optical constants of all involved materials
which allows realistic computations of optical setups. This application example is discussed in detail
in the introductory tutorial (see separate documentation). Some typical SPRAY applications are
discussed in a separate documentation as well.

The next section gives a SPRAY overview.

Introduction 11

© 2001 Wolfgang Theiss

1.2.2 How to find how it works

If you never worked with SPRAY before you should follow the first SPRAY tutorial (separate
documentation) step by step. You will be guided through the most important sections of the program
- as short as possible.
You should also inspect the discussion of SPRAY examples (separate documentation) in order to get
an impression of what you can do with the program.

If you are an experienced SPRAY user, please read the section "What's new in version 2.4" about
major SPRAY changes in 2008.

More detailed information is given in the following sections:

· Description of the SPRAY algorithm
· In most cases you will need optical constants for the materials used in your scenery
· SPRAY contains a very powerful technique to include light scattering media
· Materials and light scattering media are separated by interfaces
· Your scenery is composed of geometric objects which are usually covered by interfaces
· Objects called Cameras can be used to visualize your SPRAY scenery
· Having defined and positioned all required objects you can start the ray-tracing simulation

· Starting with SPRAY 2.0 you can work on a SPRAY simulation with the computational power of
several PCs. See the section on Distributed computing for further information.

· If you have to perform many simulations you should automize your work with OLE automation.
· In order to optimize an optical system you can automatically adjust parameters of SPRAY objects.

Be prepared, however, that the optimization will take a long time.

General information:
· SPRAY uses many lists - you can get information about working with list in the SCOUT technical

manual. Your SPRAY package very likely contains a printed version of this document.
· Objects defining optical constants as well as detectors display spectra in 2D or 3D graphs. See the

separate documentation 'A graphics course ' to learn how to handle these.

1.2.3 The new user-interface of version 2.4

In August 2008 SPRAY has been upgraded to version 2.4. This section gives a short summary of
the most important program changes.

Main window
In order to indicate that SPRAY 2.4 significantly differs from previous versions, the main window
looks different now:

SPRAY12

© 2001 Wolfgang Theiss

Like our SCOUT thin film analysis software, you can work in SPRAY on two levels: The main
window starts in the so-called 'main view level' (as shown above). Unlike in SCOUT, the main view
level in SPRAY is still under construction, and you cannot use it at the moment. In the future you will
be able to define your own views on SPRAY objects and create flexible user interfaces. What is
ready is the so-called treeview level which you enter by pressing F7. With F7 you toggle between
the treeview and the main view level.
In the treeview level, you see a treeview of the current SPRAY objects on the left. The branches of
the object tree are the various lists that build up the SPRAY configuration:

Introduction 13

© 2001 Wolfgang Theiss

With a right mouse click you can open an object in the treeview - it will show its content in the right
half of the main window. The example above shows the situation after a right-click on 'Message
board' (The message board has replaced the 'Information panel' that was shown in the main window
of previous SPRAY versions.).
A right click on Materials, for example, opens the list of materials that you may recognize from older
versions of SPRAY:

SPRAY14

© 2001 Wolfgang Theiss

Most list objects appear in the treeview as well if you open the treeview branch by a left mouse click
on the + to the left of a tree branch. If you expand the tree branch Materials, for example, you will
get the following situation:

Introduction 15

© 2001 Wolfgang Theiss

A right-click on the material PET in the treeview opens this object:

SPRAY16

© 2001 Wolfgang Theiss

Drag&Drop operations are done in the following way: Open the source object of the drag operation
in the treeview and then open the target object for the drop operation with a right-mouse click in the
treeview. Then drag from the source object in the treeview to the destination in the right half of the
window. Here is an example: In order to assign a material to a layer in a layer stack, expand the
treeview branch Materials and open the layer stack object as follows:

Introduction 17

© 2001 Wolfgang Theiss

The red arrow shows the direction of the drag&drop movement.

There is only one drag&drop exception: If you want to move a material object from the Database
of optical constants you have to drag the material from the database grid on the right to the
Materials branch in the treeview on the left. Here is an example:

SPRAY18

© 2001 Wolfgang Theiss

1.2.4 SPRAY algorithm

1.2.4.1 Principle

Widely used ray tracing algorithms for a more or less realistic simulation of pictures ('virtual reality')
start with rays from an observation point, send them through the pixels of a pixel array and trace
back which object of the collection of things in the defined scenery is hit first (see the figure below).

The color and brightness of the pixel is set according to the color and brightness of the hit point
which - in turn - depends on its illumination from the surrounding light sources and the light reflections
due to neighboured objects. In case of polished surfaces one has to split up the ray into a reflected
and a transmitted contribution and follow up their paths through the scenery - typically not more than

Introduction 19

© 2001 Wolfgang Theiss

five propagation iterations are taken into account. Usually quite crude assumptions on the specular or
diffuse reflection properties of the surfaces are made - the quality of the result depends of course on
the quality of the component's optical properties that are input to the software.
The 'virtual reality ray tracing method' discussed above is used in SPRAY only for taking pictures of
the setup (called 'rendered views'). For a quantitative simulation of optical devices a different
approach is more appropriate which is sketched below. A direct simulation of what happens in
reality is done: The light source emits light (rays) in various directions and the objects in the scenery
absorb or re-direct rays until finally the rays are absorbed or vanish to 'infinity' (if no object is hit any
more).

Working with rays is of course only an approximation: Actually light sources emit quite complex
radiation fields and generally one must take into account phase relations between partial waves (as is
apparent in optical interferometry or diffraction effects). The ray-tracing approach neglects phases of
electric and magnetic fields and describes light propagation in terms of 'intensity needles' with well
defined direction and negligible dimensions perpendicular to the propagation direction.

Using light rays the quite complex 'real life' (inter)actions can be separated into actions of distinct
objects characterized by certain geometric properties and abilities to process incoming rays. This is a
situation tailored for object oriented programing (OOP) which has been used to realize the SPRAY
program. OOP allows the definition of objects with certain properties and possible actions which
directly correspond to real objects: The SPRAY actors are light sources, mirrors, detectors and so
on which are controlled and coordinated by an object manager sending and receiving messages.

1.2.4.2 Simulation logic

The basic algorithm is based on the following scheme which is given here almost like it is defined in
the program's source code:

Repeat
Manager selects frequency. SPRAY starts with the high energy end of the selected spectral

range.
Manager tells all objects the current frequency.
Objects do frequency dependent initialization if necessary.
Repeat

SPRAY20

© 2001 Wolfgang Theiss

Manager tells light source to create a ray.
Light source creates ray with an initial position and direction depending on the type of the

light source. The initial polarization is random. The ray travels in a certain material
assigned to the light source. The material has a refractive index, an absorption coefficient
and may contain small scattering and absorbing particles (which are simply called
scatterers in SPRAY) in a user-defined concentration.

Repeat
Manager asks all objects wether they get hit by the present ray.
All objects determine if ray hits them and return position of hit.
Manager selects closest hit point. If two objects report the same distance (within some

tolerance) the one with higher priority wins.
Manager determines wether an absorption, scattering or fluorescence process occurs on

the ray's path from its present position to the closest hit point (if the ray 'moves' in a
material which may absorb, scatter or absorb and re-emit light)

If scattering occurs the ray is started at the position of the scattering event with a new
direction which is determined by the scattering characteristics.

If fluorescence occurs the new frequency (lower than the current frequency) is computed
according to the current fluorescence properties. The starting point of the new ray is
added to a waiting queue of rays to be processed when the lower frequency is going
to be processed.

If no absorption, scattering or fluorescence occured:
Manager asks object with closest hit what happens with ray.
Object absorbes ray or changes its direction and/or possibly changes the material in

which the ray moves (in case of an 'interface' object).
until ray is absorbed or no hit with one of the objects occurs.

until a user-defined number of rays has been processed
Repeat

Manager gets a ray from the 'fluorescence waiting queue' and starts it at its location in a
random direction and with random polarization

Repeat
Manager asks all objects wether they get hit by the present ray.
All objects determine if ray hits them and return position of hit.
Manager selects closest hit point. If two objects report the same distance (within some

tolerance) the one with higher priority wins.
Manager determines wether an absorption, scattering or fluorescence process occurs on

the ray's path from its present position to the closest hit point (if the ray 'moves' in a
material which may absorb, scatter or absorb and re-emit light)

If scattering occurs the ray is started at the position of the scattering event with a new
direction which is determined by the scattering characteristics.

If fluorescence occurs the new frequency (lower than the current frequency) is computed
according to the current fluorescence properties. The starting point of the new ray is
added to a waiting queue of rays to be processed when the lower frequency is going
to be processed.

If no absorption, scattering or fluorescence occured:
Manager asks object with closest hit what happens with ray.

Introduction 21

© 2001 Wolfgang Theiss

Object absorbes ray or changes its direction and/or possibly changes the material in
which the ray moves (in case of an 'interface' object).

until ray is absorbed or no hit with one of the objects occurs.
until all rays in the waiting queue (generated by fluorescence events) are finished.
Manager tells all objects that the current frequency simulation is done.
Objects do clean-up if necessary.

until all frequency positions have been processed.

1.2.4.3 General properties of SPRAY objects

All objects (existing ones and those of the future) must be able to react to a number of manager
commands and to perform certain calculations and user interactions. Here is an overview to give you
an idea about SPRAY objects' structure and abilities.

Interfacing with the user and SPRAY:
set geometrical data in a user dialog
determine frequency dependent properties in a user dialog
objects write their data to SPRAY binary files
objects read their data from SPRAY binary files

Frequency scan:
objects adjust their behaviour when a new frequency is selected
objects eventually update their internal data when the simulation for a frequency is done

Ray-tracing:
objects calculate possible hit points for arbitrary rays (if there are more than one hit points the

object selects the first one, i.e. the one closest to the origin of the ray)
objects decide what happens to a ray after a hit

Whenever you would like to have a type of object in SPRAY that doesn't exist presently you can
suggest to implement it - it might be useful for other users, too. The fastest implementation is
achieved when you can even supply a suitable way to compute the hit point for arbitrary rays - this is
usually the most difficult part, especially for objects with complicated shapes.

The optical properties of all materials that are used in SPRAY are defined using the same objects as
in the SCOUT software package. As in SCOUT, you can connect to a database of optical constants
and layer stacks and use its items.

Since SPRAY does a fully three-dimensional ray-tracing you as a user must specify all the geometric
data of all the objects which can be a tedious job. All lengths are specified in 'cm' - there is no option
to change this basic unit up to now.

SPRAY22

© 2001 Wolfgang Theiss

2 Optical constants

2.1 Optical constants

The quality of optical simulations may critically depend on the choice of the underlying optical
constants. SPRAY contains very powerful dielectric constant models as well as a large database of
literature data and pre-defined models.

The definition of optical constants (or dielectric functions) in SPRAY is exactly the same as in our
spectrum simulation program SCOUT. Please refer to the SCOUT technical manual (online version:
www.mtheiss.com/docs/scout2/index.html) for details. A printed version of the SCOUT manual is
included in your SPRAY documentation.

Optical constants enter SPRAY simulations in the following ways:

· Each light source is embedded in a certain material. Its optical constants are assigned to the light
source object by drag&drop from the list of materials. The ray continues to move in that medium
unless it crosses an interface which defines a change of the optical constants.

· Interfaces may consist of layer stacks. An optical constant object from the list ofmaterials must be
assigned to each layer of a layer stack. The stack of layers is embedded between a top and a
bottom 'halfspace'. If the materials assigned to top and bottom halfspace are different and a ray
crosses the interface, it continues its motion in the new material.

Scatterers 23

© 2001 Wolfgang Theiss

3 Scatterers

3.1 Overview

Explicit, individual scattering objects
Scattering of light can be simulated by curved geometric objects. You could add a glass sphere to
your scenery, and rays hitting the sphere will change their direction according to the laws of reflection
and refraction. Inside the sphere absorption may occur. If you want to introduce many explicit
scatterers into your SPRAY model, please consider using a complex object.

Continuous scattering media
If you want to treat systems with many scattering objects like dust clouds or paints, and if these
objects are small compared to the other geometric objects of the model, you can probably work
with a continuum of scatterers. If SPRAY light rays move through such a continuum there is a certain
chance for scattering and absorption per distance, depending on the shape, the optical constants and
the density of the scatterers. If a scattering event occurs, the ray will take a new direction the
probability of which is also a function of the particle's shape and optical constants.

The scattering and absorbing medium is characterized by the following quantities:

() ()

() FQQQ=

=QQ=Q

==

==

òò ddS

cm
letering angy for scatprobabilit

cm

ty probabiliAbsorption
K

cm

yprobabilitScattering
S

sinW

1
][W W

1
 [K]

distance

1
 [S]

distance

The scattering angle Q is the angle between the direction of the incoming ray and that of the scattered
ray. Up to now SPRAY assumes cylindrical symmetry of the scattered intensity around the initial
direction - hence there is no F-dependence.

The following types of scatterers are implemented at present:

· General scatterers
· Mie scatterers
· Extended Mie scatterers
· Fluorescent scatterers
· Fluorescent Mie scatterers
· Composite scatterers

SPRAY24

© 2001 Wolfgang Theiss

In the main window of SPRAY there is a button labeled Scatterers which gives access to the list of
scatterers. This list manages the various scatterers of a SPRAY model.

Please consult the documentation on SPRAY examples for some applications of scatterers.

3.2 General scatterers

This type of scatterers simply imports the required spectral data to compute K, S and W(Q) from
external data files. The external files must be created by other programs.
For practical reasons, the external data must be provided in a form that the volume fraction can be
changed afterwards. In fact, the volume fraction of the scatterers is the only parameter of general
scatterers.

General scatterer windows look like this:

Scattering data are imported using the Import menu command. The following file formats for data
input are supported:
· RT file fomat (RT = Radiation Transfer), described below

After setting the volume fraction in the corresponding input box you have to use the Update menu
command to compute K, S and W(Q). K and S are displayed in the window (blue and red curve).
At present, the angle dependence cannot be viewed in general scatterer objects but has to be

Scatterers 25

© 2001 Wolfgang Theiss

inspected with the external program View_rt delivered with SPRAY.

3.3 Mie scatterers

Objects of this type compute the average absorption and scattering characteristics of collections of
spheres. The main window is this:

Like with general scatterers you can import rt-files and set the volume fraction of the scattering
particles. In addition, you can compute your own absorption and scattering data using an external
Mie program (the quite old-fashioned DOS program RTMIE, delivered with SPRAY) which will do
the computational work.
In a subwindow of Mie scatterer objects which you open by the Parameter command you can set
the required parameters for the Mie computation:

SPRAY26

© 2001 Wolfgang Theiss

You have to specify the following items:
· The optical constants of the sphere material: Open the list of dielectric functions and drag an entry

to the text field right to the label 'Source DF:'. Make sure that the name of the right dielectric
function is displayed (in the example above: Glass).

· The refractive index of the host material surrounding the spheres: Enter the value of the refractive
index in the field next to the label 'n(host)'. The refractive index must be constant and real. If you
use the generated scattering data later on in a SPRAY simulation you must use the same
surrounding refractive index as used here in the Mie computation.

· The wavenumber range for the output data: For historical reasons the spectral unit to be used in
Mie computations must be wavenumbers. You have to specify the minimum and maximum value
and the number of data points.

· The files for the computed efficiency data (see below) and the RT output data (that are later used
in SPRAY).

· The radius distribution of the spheres: The Mie computations are performed for a distribution of
sphere sizes which is displayed in the graph of the window. The radius distribution shown above

Scatterers 27

© 2001 Wolfgang Theiss

has the following meaning: If you take a collection of 1000 spheres you will find 100 particles with
radius 1 micron, 200 with radii 2 and 3 microns, 400 with radius 4 microns and 100 with radius 5
microns. You can use the Import command to import the radius distribution from a file.
Alternatively you can import a distribution from the workbook using the Workbook commands.
Note that the sphere radius has be entered in 'm'.

In order to perform Mie computations with the RTMIE program the program file rtmie.exe must
be present in the directory c:/mie. This is an old FORTRAN program running in a DOS box. It
cannot handle long filenames and filenames or directory names with blanks correctly.
Hence you should be careful with the choice of filenames in your Mie work.

Activation of the Calculation command starts the following actions:
· SPRAY will create files that contain the dielectric function and the radius distribution of the

spheres.
· The filenames and the other parameters are written to a small textfile called rtmie.ctl which is

stored in the fixed directory c:/mie.
· RTMIE is started. It will run in a DOS box, load the input data, show the progress of the work

and finally create the required output data.

When the RTMIE program quits you can start to use the computed RT data for your SPRAY
computations.

3.4 Extended Mie scatterers

This program feature does not work in all SPRAY versions. The
external program layeredspheres.exe must have been included in
your SPRAY purchase.

Objects of this type are very similar to Mie scatterers. You can compute the scattering and
absorption characteristics of multiply layered spheres and use these data in your SPRAY multiple
scattering calculations.
The main window looks like this:

SPRAY28

© 2001 Wolfgang Theiss

In blue you see the absorption and in red the scattering coefficient. As indicated, you can modify the
volume fraction of this type of scatterers in this window. All settings for the Mie computation for
coated spheres are done in a separate window that you can open by the Parameters command:

Scatterers 29

© 2001 Wolfgang Theiss

In this window you have to specify the coating, the sphere size distribution and the spectral range for
the Mie computation. In addition, some files must be specified for the transfer of information to and
from the external Mie program that performs the numerical work.

Radius distribution
The graph shows the radius distribution of the coated spheres. Radius means in this case the total
radius including the homogeneous core and the total thickness of all layers that are coated on the
sphere:

SPRAY30

© 2001 Wolfgang Theiss

The radius distribution can be imported from data files (use the Import command) or from the
workbook. You must specify two columns of data the first of which holds the total radius of the
sphere, the second one the probability for this radius to occur in the distribution. Here is a workbook
example:

To import these data, place the workbook cursor in the cell A1 and then use the command
Workbook|Import xy.
The radius distribution should be normalized. A probability of 0.05 for the radius 1 micron means
that in a collection of 1000 spheres there are 50 with radius 1 micron.

Scatterers 31

© 2001 Wolfgang Theiss

Coating
The coating of the spheres is defined in the list of interfaces as a layer stack. Here a 100 nm thick
water film on glass spheres is defined:

The top halfspace fills the volume outside the sphere, the bottom halfspace defines the material of the
sphere core. In between an arbitrary number of thin films can be used.
Once the layer stack is defined, you can drag it from the list of interfaces to the 'Mie definition
window' and drop it onto the label called 'Layer stack:' in the speed button panel. Verify that the
right interface has arrived.

Spectral range
In the section labeled as Output range you can specify the wavenumber minimum and maximum,
and the number of data points. At present wavenumbers only are allowed here.

Transfer files
Finally some filenames for the data transfer to and from the Mie program must be entered. Please
click on the buttons Configuration file, Efficiency output, Phase functions, and RT output to
set these filenames. If you like you can use the same filename in each case. SPRAY will add different
file extensions automatically.
Once you have to tell SPRAY where the Mie programm called 'LayeredSphere.exe' is located in
your system. Usually you will find the program in the directory where the SPRAY program has been
installed.

SPRAY32

© 2001 Wolfgang Theiss

When the Mie computation is started (see below), the configuration file will be passed to the Mie
program in order to inform it about the requested computations. The obtained scattering and
absorption efficiencies, the phase functions and the scattering and absorption characteristics ready
for SPRAY in form of an RT-file are stored in the corresponding files. Especially the files containing
RT data and phase functions can be quite large. It might be a good idea to check from time to time if
you can delete some of these files.

Starting the Mie computation
Having done all settings you can close the Mie parameter window and go back to the previous one
which will receive and display the results. In order to start the computation activate the command
Calc Mie data and wait. The Mie program (which is a console program running in a DOS box
which may flash up for a while) is started several times (once for each size class of the radius
distribution). When the numerical data are ready you are informed by a short dialog:

You can inspect the spectral and angular distribution of the scattered light using the View_RT utility
which is described below.

The use of this kind of object for the computation of diffuse reflectance spectra is explained in
SPRAY tutorial 1, example 2.

3.5 Fluorescent scatterers

Fluorescent scatterers do not only absorb or scatter radiation, but also re-emit radiation at a
frequency different form the frequency of the absorbed radiation. In the present implementation the
energy of the emitted rays must be lower than the one of the absorbed light. This should be a good
approximation in most cases. The energy shift between absorbed and emitted radiation requires
some refinement of the SPRAY algorithm to compute spectra which is shortly described below.

The properties of fluorescent scatterers are defined in the following window:

Scatterers 33

© 2001 Wolfgang Theiss

The graph shows four spectra:
· The blue curve gives the probability / distance (in cm) for absorption without further re-emission.
· The red spectrum is the probability / distance for isotropic scattering without energy shift

(sometimes called 'Elastic scattering').
· The solid green line shows the probability / distance for absorption and subsequent re-emission at

lower energy (fluorescence).
· The dashed green line gives the spectral composition of the re-emitted low frequency radiation.

At present, all four probability curves are imported from text files (extension *.ifd) which have the
following structure:

10000 0.0002849304889 0.0001424652444 5.698609778E-005 1.388794386E-011
10100 0.0003091027739 0.000154551387 6.182055478E-005 3.737571328E-011
10200 0.0003351888926 0.0001675944463 6.703777852E-005 9.859505576E-011
10300 0.0003633281703 0 .0001816640852 7.266563406E-005 2.54938188E-010
10400 0.0003936690407 0.0001968345203 7.873380813E-005 6.461431773E-010
10500 0004263695576 0.0002131847788 8.527391152E-005 1.605228055E-009
10600 0.0004615979303 0.0002307989652 9.231958606E-005 3.908938434E-009
10700 0.0004995330806 0.0002497665403 9.990661611E-005 9.330287575E-009
10800 0.0005403652241 0.000270182612 0.0001080730448 2.182957795E-008
10900 0.0005842964753 0.0002921482376 .0001168592951 5.006218021E-008
11000 0.0006315414766 0.0003157707383 0.0001263082953 1.125351747E-007
11100 0.0006823280528 0.0003411640264 0.0001364656106 2.479596018E-007

.

SPRAY34

© 2001 Wolfgang Theiss

.

.

The first column is the spectral position. It must be specified using wavenumbers (inverse wavelength,
the unit is 1/cm). The second column is the probability / distance (in cm) for absorption without
further re-emission (the blue curve above), followed by the probability for isotropic scattering
without energy change (red curve) and the absorption probability with energy shift (green solid line).
Finally, the last column gives the frequency distribution of the re-emitted fluorescent radiation (which
is isotropic concerning the direction distribution).
The input data for fluorescent scatterer objects can conveniently be created using the Data Factory
utility (which is delivered with SPRAY) and the built-in workbook. Once you have computed and
copied all required data columns into the right sequence you can export the workbook data using the
text file format 'Tabbed text'.

The SPRAY algorithm to do ray-tracing simulations has been extended in order to include the energy
shifts caused by fluorescent scatterers. SPRAY always does the loop through all spectral points
starting at the highest energy. If you use eV, 1/cm or THz, it will start with the highest value. If
wavelengths (nm or microns) are selected, SPRAY will start with the lowest value.
During the simulation, SPRAY collects all rays which are absorbed by a fluorescent scatterer and for
which re-emission occurs. The rays are added to a queue at the energy selected for re-emission.
After all rays emitted by the light source are processed for a spectral point, SPRAY checks if there
are 'fluorescent' rays in the queue to be re-started at this frequency. Of course, the rays are started
where there were absorbed previously. This way the algorithm includes multiple absorption-emission
cycles. However, only energy shifts towards lower energies are possible at the moment.

A simple example demonstrates the use of fluorescent scatterers. A circular light source illuminates a
cylinder filled with the scatterers. The probabilities shown in the graph above are used.
Two detectors register radiation: One collects rays moving in the direction of the radiation emitted by
light source (mainly un-absorbed and un-scattered rays are found here), one 'sees' rays scattered to
the side (elastically scattered radiation as well as fluorescence light).
The 'forward detector' spectrum is this:

Scatterers 35

© 2001 Wolfgang Theiss

Below 600 nm the spectrum is dominated by the large absorption/scattering losses whereas in the
infrared region almost all rays move through the cylinder without modification. Around 680 nm the
sum of re-emitted rays from higher energies and unscattered and elastically scattered rays is larger
than the number of rays emitted by the light source in this spectral range. Hence the detector signal is
larger than 1 which may occur in the case of fluorescence.
The detector recording the radiation scattered sideways has the following spectrum:

SPRAY36

© 2001 Wolfgang Theiss

Here we see the superposition of elastically scattered light (the broad distribution below 800 nm) and
the sharper peak of fluorescence light around 680 nm.

3.6 Fluorescent Mie scatterers

This object type combines extended Mie scatterers with fluorescence. An extended Mie scatterer
subobject is used to compute the absorption and light scattering properties of the scatterers. The
absorbed radiation is re-emitted with a probability given by the quantum efficiency subobject and a
spectral distribution defined by the subobject 'Spectral distribution of emittted radiation'.

3.7 Composite scatterers

Composite scatterers are mixtures of several general scatterers. If a paint, for example, is composed
of several types of inclusions in a host, you can compute the absorption and scattering behaviour of
each type individually and then import these data in general scattering objects. Then you create an
object of type Composite scatterer which simply adds up the individual absorption and scattering
probabilities.
The main window of composite scatterers is this:

Scatterers 37

© 2001 Wolfgang Theiss

It shows the scattering and absorption probabilities K and S of the mixture. The spectral range can
be set by the Range command. It may be different from the ranges of the individual scatterers.
Composite scatterers use a list to manage the general scatterers that make up the composition. The
list is opened pressing the List button:

First, with the button labeled '+' you create as many scattering types as you want to mix. Then you
fill each entry with the wanted general scatterer by a drag&drop operation from the list of scatterers.
This list is viewed by pressing the Scatterer button in the main window of SPRAY.

SPRAY38

© 2001 Wolfgang Theiss

3.8 The RT file format

The RT file format used to store average single scattering characteristics is a text file format. Basically
it contains one long column of data structured in a way described below. Some details of the file
format may appear a little strange - well, it is a quite old format and its history will not be discussed
here.
An example of an RT file is shown first:

 0.0
 180.0
 9150
 .94395262E-22 .10000000E+05 .25000000E+05 50 .10000000E+01
 .382960E-19
 .488527E-18
 .597476E-19
 .597382E-19
 .597103E-19
 .596638E-19
 .595988E-19
 .595154E-19
 .594137E-19
 .592939E-19
 .591560E-19
 .590003E-19
 .588269E-19
 .586360E-19
 .584280E-19
 .582030E-19
 .579613E-19
 .577033E-19
.
.
.

The individual columns have the following meaning:

 0.0
Line 1: Minimum angle (should be 0 in all cases)
 180.0
Line 2: Maximum angle (should be 180 in all cases)
 9150
Line 3: Total number of data points: This is the product of the number of spectral points and angular
points
 .94395262E-22 .10000000E+05 .25000000E+05 50 .10000000E+01
Line 4: This line holds 5 numbers. The first one is the parameter t which is the average volume of the
scattering particles. The unit to be used here is m 3̂. The next three numbers define the spectral range
(which must in wavenumbers!): Wavenumber minimum, wavenumber maximum and number of data
points. The last number is the refractive index of the host material surrounding the scattering particle.
Dividing the total number of data points (9150) by the number of data points of the spectral range (50)
one gets 183. This means that there are 183 numbers for each wavenumber in the file: The cross section
for absorption (in m 2̂), the cross section for scattering (in m 2̂ as well) and 181 data points covering the

Scatterers 39

© 2001 Wolfgang Theiss

angle range from 0 to 180 degrees in 1 degree steps.
Starting with the minimum wavenumber, these 183 data points will now follow. Then the 183 numbers for
the next wavenumber point are stored in the file, and so on until all wavenumber points are processed.
 .382960E-19
Line 5: Absorption cross section for 10000 1/cm
 .488527E-18
Line 6: Scattering cross section for 10000 1/cm
 .597476E-19
Line 7: Scattering probability W(0°)
 .597382E-19
Line 8: Scattering probability W(1)
 .597103E-19
Line 9: Scattering probability W(2)
.
.
.

You can inspect the data stored in RT files using the View_RT utility program that is delivered with
SPRAY.

3.9 The View_RT utility

The angular and spectral dependence of the scattering probabilities can be visualized using the
View_RT program which is a small utility delivered with SPRAY:

SPRAY40

© 2001 Wolfgang Theiss

Use the Import command and select the RT data that you want to inspect. Here is an example:

Scatterers 41

© 2001 Wolfgang Theiss

The View_RT program is very much like the Collect program. You can generate 3D and 2D views.
In 2D mode you can use the slider to move through the wavenumber dependence of the scattering
data. Here is a screenshot:

SPRAY42

© 2001 Wolfgang Theiss

The numbers right to the wavenumber slider tell you where you are on the wavenumber and
nanometer scale.

Interfaces 43

© 2001 Wolfgang Theiss

4 Interfaces

4.1 Overview

Most of SPRAY's geometrical objects are so-called 'Interface objects' which means that their
surface may be covered with a user-defined interface. The interface determines what happens to rays
that hit the surface. You can select from some simple pre-defined interfaces and from (in general
more complicated, but also more useful) user-defined interfaces.

These interfaces are implemented at present:
· Perfect absorber (pre-defined)
· Perfect mirror (pre-defined)
· Ideal diffusor (user-defined)
· Arbitrary layer stack (user-defined)

4.2 Pre-defined interfaces

The following interfaces are pre-defined and work without any further parameter input:

Perfect absorber:
Any ray that hits a surface covered with a perfect absorber is absorbed, independent of angle of
incidence, polarization or frequency.
The following example shows a sphere coated with a perfect absorber. It is illuminated by a parallel
beam:

Perfect mirror:
Any ray hitting a surface covered with a perfect mirror is reflected with a probability of 1,
independent of angle of incidence, polarization or frequency.
A sphere coated with a perfect mirror behaves like this:

SPRAY44

© 2001 Wolfgang Theiss

4.3 Ideal diffusor

Interfaces of type 'Diffuse' are used to describe diffusely reflecting and transmitting surfaces in a
simple, phenomenological way. Diffuse reflection of light is caused by inhomogeneities like edges,
scratches or small particles. In many cases the multiple scattering of light by the inhomogeneities
leads to a so-called Lambertian scattering characteristics: The intensity of the radiation has a cosine-
like distribution with the scattering angle (where 0 deg is the surface normal).
If the light diffusion takes place on a scale much smaller than your geometric objects you can skip a
SPRAY simulation of the microscopic details and use as a shortcut interfaces of type 'Diffuse': These
produce Lambertian characteristics with user-defined wavelength-dependent reflectance and
transmittance coefficients. The user-dialog looks like this:

The buttons labeled 'Reflectance' and 'Transmittance' open subwindows which are used to define the
spectral dependence of the reflectance (or transmittance) coefficient:

Interfaces 45

© 2001 Wolfgang Theiss

You can generate the reflectance data in various ways:
· Create the diffuse reflectance spectrum by the Data Factory (a utility that comes with SPRAY)

and drag them into the reflectance window (see the SCOUT technical manual for Drag&Drop
operations)

· Create data with Excel or similar spreadsheet programs and import them into SPRAY via the
workbook (see the SCOUT technical manual for a description of workbook features and
operation).

· Type the data directly into the workbook and import them from there.
· Digitize literature data with our Digit program (included in your SPRAY package) and drag them

into SPRAY.

Of course, the transmittance data are created in the same way as the reflectance data. Make sure
that the sum of the reflectance and transmittance coefficients does not exceed 1. If the sum is smaller
than 1 part of the light is absorbed at the interface.
For a constant reflectance of 0.8 and a transmittance of 0.2 the situation looks like this (illumination
with a parallel beam from the upper left corner):

Using the Properties command you can switch from diffuse to specular reflectance and
transmittance. In this case the radiation is reflected according to the law of reflection of perfectly
smooth interfaces:

SPRAY46

© 2001 Wolfgang Theiss

In the Properties submenu you can also set the scatterers present on either side of the interface (see
the explanation above).

4.4 Specular and diffuse reflection

Interfaces of type 'Specular and diffuse' are used to combine specular and diffuse (Lambertian)
reflectance (and transmittance). The dialog has four buttons to open the corresponding windows:

For a specular reflectance of 0.3, specular transmittance of 0.2, diffuse reflectance of 0.2 and diffuse
transmittance of 0.2 (i.e. the probability for absorption at the interface is 0.1) the interface behaves
like this:

Interfaces 47

© 2001 Wolfgang Theiss

4.5 Layer stacks

The surface of interface objects can be covered with arbitrary layer stacks. Each layer is 'filled' with
optical constants taken from the list of dielectric functions. The top halfspace and the bottom
halfspace should have optical constants with small absorption coefficients:

Top halfspace

Bottom halfspace

Arbitrary number of thin layers

(weakly absorbing material)

(arbitrary dielectric functions)

(weakly absorbing material)

The window which lets you define the layer stack and some other properties (scatterers, surface tilt
angle distribution) looks like this:

SPRAY48

© 2001 Wolfgang Theiss

The definition of layer stacks in SPRAY is exactly the same as in SCOUT. Please consult the
SCOUT technical manual for details.

How it works
If a ray hits an interface with a layer stack SPRAY must decide it the ray gets reflected, transmitted
or absorbed.This is done the following way:
Before the ray-tracing for a new spectral point is started the angle dependence of the reflectance and
transmittance of the layer stack is computed for both s- and p-polarization. The angle resolution for
these calculations is set in the Parameters section.
During the ray-tracing procedure, if a ray hits the surface of an object that is covered with the layer
stack, the projection of the ray's polarization onto the direction of s-polarization and p-polarization is
determined. With probabilities proportional to these projections the polarization is changed to either
pure s- or p-polarization. For the present angle of incidence and polarization, the reflectance and
transmittance coefficient is looked up in the previously computed tables. Linear interpolation is used
between angles for which the data have been calculated. Based on the values for reflectance and
transmittance, it is decided if the ray is reflected, transmitted or absorbed. In the case of reflection
the new direction is computed according to the law of reflection. The new direction of a transmitted
ray is set applying the law of refraction, taking into account the real part of the index of refraction of
top and bottom halfspace.

Layer stacks are considered to be infinitely thin with respect to the geometrical dimensions of the
objects in the ray-tracing scenery. To be consistent with this assumption, the total thickness of the
layer stacks used in a SPRAY simulation must be small enough.

Scatterer assignment
All user-defined interfaces can be used as separation between continuum scatterers. Usually the
Properties submenu contains a command called Scatterer assignment which opens the following
dialog:

Interfaces 49

© 2001 Wolfgang Theiss

From the list of scatterers you can drag the appropriate scatterers to the top and the bottom
halfspace, respectively. The two halfspaces are separated by the interface, of course. The default
selection for the scatterers is 'No effect' which means there are no scatterers on both sides of the
interface.
The picture below shows an example: The upper interface (viewed from the side) switches from a
non-scattering medium (top) to a light scattering continuum (bottom):

Introducing surface roughness: Tilt of surface normal
You can introduce surface roughness to the SPRAY model in a simple, statistical way. Instead of
explicitly defining a certain surface shape (which is possible with user-defined surface shape objects)
you can tilt the surface normal according to a statistical distribution whenever a ray hits the surface.
The point where the hit occurs is still determined by the geometric object but the surface normal tilt
angle is taken statistically.
Using the menu command Properties|Distribution of surface normal tilt angles you can open a
subwindow which is used to define the tilt angle distribution:

SPRAY50

© 2001 Wolfgang Theiss

Please note that this window blocks SPRAY until it is closed again: You cannot access other parts of
the program as long as this window is open.
The tilt angle distribution is used only if the checkbox 'Active' is checked. It is ignored otherwise.
Depending on the settings of the checkboxes 'Use formula', 'Use lookup table' and 'Use imported
data' the angle distribution is computed from a
· user-defined formula: Type in a formula in the edit box to the right of 'Y(X,Y) = ' in the top of the

window. In the formula, use the term 'X' to refer to the angle. Click on the menu command Range
in order to set the angle range where the formula is going to be evaluated. This can be 0 ... 90
degree or a subrange. Use a large number of points in the range dialog, e.g. 500 or 1000, in order
to display the user-defined curve. Finally press Go or Update in order to compute the distribution.

· a lookup table: The distribution is computed using a lookup table. The lookup table is imported
from the workbook using the command Workbook|Import lookup table from data columns or
Workbook|Import lookup table from data rows. Here is an example of a workbook page with
a lookup table:

Interfaces 51

© 2001 Wolfgang Theiss

Place the cursor into cell B3 and use the command Workbook|Import lookup table from data
columns in order to read the table values. Afterwards the points of the lookup table are displayed
in the graph:

Check the option Use lookup table and press Go. Now the distribution is computed using linear
interpolation in between the points of the lookup table and constant extrapolation outside the range

SPRAY52

© 2001 Wolfgang Theiss

of the lookup table:

· a set of imported data points: Use the Import menu command to import the complete angle
distribution from a data file. Alternatively, you can import the data using the command Workbook|
Import xy (this will read data columns from the workbook, starting at the cursor position). Please
read the section 'Technical notes|Import formats' in the SCOUT technical manual for more
information on file import data formats.

Here is a simple example demonstrating the introduction of surface roughnes using this mechanism of
surface normal tilting: A light source illuminates aa glass plate from the upper left. Without surface
roughness the ray-tracing looks like this:

Interfaces 53

© 2001 Wolfgang Theiss

Using the formula exp(-(x/5)^2) the following distribution is created:

SPRAY54

© 2001 Wolfgang Theiss

Activating the surface tilt by checking the Active checkbox the ray-tracing changes to this:

Interfaces 55

© 2001 Wolfgang Theiss

SPRAY56

© 2001 Wolfgang Theiss

5 Geometric objects

5.1 Overview

The geometric objects of SPRAY are managed by the 'List of objects'. The list is opened with the
button 'Objects' in the main window. Here is an example:

In the list, you can overwrite the name of the objects and set their priority. If, during the ray-tracing,
two objects report the same distance to the starting point of the current ray, the one with the highest
priority will get the order to handle this ray (see the description of the SPRAY ray-tracing algorithm).
Like in almost all lists, a double click on a row lets you select a color for the corresponding object:

Assigning colors to objects can make long lists easier readable. In addition, you can use the assigned
colors of the objects for camera views. The global SPRAY option 'Use object colors for camera
views' (Use the command File|Options|Use object colors for camera views in order to check or
uncheck this option) is used to control the color assignment of objects in camera views: If the option
is unchecked, default colors are used. Otherwise the user-defined color assignment is taken to
display the objects in a view.
For the example configuration given above, a view with default colors looks like this:

Geometric objects 57

© 2001 Wolfgang Theiss

Setting the option 'Use object colors for camera views' one gets

.

The available objects are classified as follows:

· Light sources (these objects emit rays)
· Detectors (these objects detect rays)
· Interface objects (these objects reflect, absorb or transmit rays. Depending on the assigned type of

interface the reflection or transmission is specular or diffuse)
· Special objects (here objects are collected that do not belong to one of other the categories)

Activation / De-activation of objects
If you want to exclude an object from SPRAY simulations temporarily you can de-activate it by
clicking with the right mouse button in the 2nd column of the object's row (the type column)
while the shift key is pressed on the keyboard. To indicate the de-activation the object's name is

SPRAY58

© 2001 Wolfgang Theiss

displayed in brackets like the 'Array detector' in the following example:

To turn an object back into the activated state right-click again with the shift key pressed.

Copy: Duplication of objects
Any object (except the light source) in the list of objects can be duplicated by the Copy command.
Since a temporary file is used during the copy action, this command only works if you have the right
to write to the local drive c: on your PC.

5.2 Light sources

5.2.1 Overview

Light sources emit rays. Some of the SPRAY light sources are transparent, some are absorbing.
Every light souce must be embedded in a material which is to be taken from the list of dielectric
functions. If the light source is embedded in a light scattering material you have to set the
corresponding scattering object.

At present there must be exactly one light source in a SPRAY setup.

The following types of light sources are available:
· Point light source
· Rectangular light source
· Circular light source
· Volume light source

5.2.2 Point light source

This is the simplest type of light sources emitting rays from a single point in space with random
directions. The only geometric quantity to be specified is the position of the point light source. The
dialog to do so is the following:

Geometric objects 59

© 2001 Wolfgang Theiss

The rays emitted by the light source move in the 'surrounding material'. Open the list of dielectric
functions and drag an entry from there over the text label 'not defined'. Drop it there and make sure
that the label now displays the wanted material (vacuum in most cases).
If the light source is embedded in a scattering material, drop an item from the list of scatterers to the
text label 'Scatterer - no effect'.

In rendered views point light sources appear as small spheres:

Access by OLE automation
OLE automation controllers can modfiy a point light source named 'MyName' in the SPRAY object
list by the following OLE commands:

SPRAY60

© 2001 Wolfgang Theiss

object_parameter("MyName", "x"): read/write the x-coordinate of the position
object_parameter("MyName", "y"): read/write the y-coordinate of the position
object_parameter("MyName", "z"): read/write the z-coordinate of the position

5.2.3 Rectangular light source

Rectangular light sources have a rectangular shape and emit rays on one side of the rectangle into a
cone of directions. The cone angle can be specified by the user. To define the orientation of the
rectangle and to set the cone angle the following dialog is used:

The vector called 'Location' defines the center of the rectangle (the blue arrow in the sketch below).
The two other vectors should be perpendicular with respect to each other. They span the rectangle
as indicated below by the two red vectors. The cross product of vector 1 and vector 2 gives the
surface normal. The cone angle of the emitted radiation is measured from the surface normal. If the
option 'Absorbing' is checked the rectangular light source absorbs any ray that hits the rectangle.
Otherwise, the rectangle is transparent to radiation.

Geometric objects 61

© 2001 Wolfgang Theiss

Vector to rectangle center

Rectangular detector

Vectors that 'span' the rectangle

Surface normal

Emitted rays are started at a position chosen randomly on the rectangle. Their initial directions are
selected randomly as well within the user-defined cone. The surrounding Material and Scatterer
are set the same way as for point light sources.

The following graph shows the appearance of a rectangular light source in a rendered view, emitting
some test rays:

Access by OLE automation
OLE automation controllers can modfiy a rectangular light source named 'MyName' in the SPRAY
object list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of the position
object_parameter("MyName", "y"): read/write the y-coordinate of the position
object_parameter("MyName", "z"): read/write the z-coordinate of the position

object_parameter("MyName", "x1"): read/write the x-coordinate of vector 1
object_parameter("MyName", "y1"): read/write the y-coordinate of vector 1
object_parameter("MyName", "z1"): read/write the z-coordinate of vector 1

SPRAY62

© 2001 Wolfgang Theiss

object_parameter("MyName", "x2"): read/write the x-coordinate of vector 2
object_parameter("MyName", "y2"): read/write the y-coordinate of vector 2
object_parameter("MyName", "z2"): read/write the z-coordinate of vector 2

5.2.4 Circular light source

Circular light sources have a circular shape and emit rays into a cone. The cone angle can be
specified by the user. To define the orientation of the circle and to set the cone angle the following
dialog is used:

The center of the circle is defined by the 'Location' vector (blue in the sketch below). The surface
normal is given by the vector called 'Ray vector' which is the black arrow. This is also the center of
the emission cone. The 'Radius' parameter is the radius of the circle.

Geometric objects 63

© 2001 Wolfgang Theiss

Vector to center

Light emitting circle

Radius

Surface normal

If the option 'Absorbing' is checked the circular light source absorbs any ray that hits the circle.
Otherwise, the rectangle is transparent to radiation.

Appearance of a circular light source in rendered views:

Access by OLE automation
OLE automation controllers can modfiy a circular light source named 'MyName' in the SPRAY
object list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of the position
object_parameter("MyName", "y"): read/write the y-coordinate of the position
object_parameter("MyName", "z"): read/write the z-coordinate of the position

object_parameter("MyName", "x1"): read/write the x-coordinate of surface normal
object_parameter("MyName", "y1"): read/write the y-coordinate of surface normal
object_parameter("MyName", "z1"): read/write the z-coordinate of surface normal

SPRAY64

© 2001 Wolfgang Theiss

5.2.5 Volume light source

Volume light sources are light emitting boxes. The orientation and size of the box and the other
required parameters are specified in the following dialog:

The 'Location' vector gives the box center, whereas the other three vectors point from the center of
the box to the centers of three rectangles that define the boundary of the box:

Vector to rectangle center

Vectors 'spanning' the box

Access by OLE automation
OLE automation controllers can modfiy a volume light source named 'MyName' in the SPRAY
object list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of the position
object_parameter("MyName", "y"): read/write the y-coordinate of the position
object_parameter("MyName", "z"): read/write the z-coordinate of the position

Geometric objects 65

© 2001 Wolfgang Theiss

object_parameter("MyName", "x1"): read/write the x-coordinate of vector 1
object_parameter("MyName", "y1"): read/write the y-coordinate of vector 1
object_parameter("MyName", "z1"): read/write the z-coordinate of vector 1

object_parameter("MyName", "x2"): read/write the x-coordinate of vector 2
object_parameter("MyName", "y2"): read/write the y-coordinate of vector 2
object_parameter("MyName", "z2"): read/write the z-coordinate of vector 2

object_parameter("MyName", "x3"): read/write the x-coordinate of vector 3
object_parameter("MyName", "y3"): read/write the y-coordinate of vector 3
object_parameter("MyName", "z3"): read/write the z-coordinate of vector 3

5.2.6 Complex light source

Complex light sources consist of several emitting surfaces. They are generated like geometric objects
of type 'complex object' (see below). All subsurfaces must be embedded in the same material but
are completely free to be positioned and oriented in space. The amount of rays started at the
individual surfaces is computed according to the relative surface area of each particular surface with
respect to the total area of the light source.

In the object's dialog, use the Geometry button to open a subwindow which allows the definition of
the subobjects exactly the same way as described for complex objects:

SPRAY66

© 2001 Wolfgang Theiss

The Objects button opens the list of the individual surfaces - here its a large collection of triangles
obtained from a CAD program:

Here is the example of an emitting bended fiber:

Geometric objects 67

© 2001 Wolfgang Theiss

5.3 Detectors

In most cases, detectors are the objects that produce the results that you are interested in. They tell
you how much rays arrive at certain positions in space or how many rays are absorbed in a certain
volume.

5.3.1 Surface detectors

Detectors of this kind count rays which are crossing a surface.

5.3.1.1 Rectangular detector

This type of detector is based on a rectangle that counts arriving rays. The dialog to set the object's
geometry is this:

SPRAY68

© 2001 Wolfgang Theiss

The meaning of the vector coordinates is exactly the same as for the rectangular light source
discussed previously.

The option 'Absorbing' determines how incoming rays are treated: If it's checked then arriving rays
are counted and absorbed, otherwise counted and transmitted without any change of direction or
polarization.
If you check the option 'on both sides' the detector will count any rays that hit the rectangle. If not,
only those rays arriving from the side into which the surface normal points are recorded.

The button View Data opens a window that shows the results after a SPRAY simulation:

Geometric objects 69

© 2001 Wolfgang Theiss

After the simulation all the detectors' spectral ranges are the same, namely the one specified for the
SPRAY simulation. For each spectral point, the fraction of rays counted by the detector is
computed, i.e. the ratio of the detected rays and the rays emitted by the light source. Please see the
section 'How many rays do you need' for a short remark about the noise level of SPRAY spectra.
The display of the data (please consult the 'Graphics course' if you don't know how to set and
modify the graph) can be printed or copied to the clipboard (as Windows metafile, a vector graphics
format).
You can export the spectrum to a data file using the Export command. The SCOUT technical
manual contains a description of the available file formats. The same document also shows how to
write the spectrum to the Workbook which is a good way to store and compare results of various
SPRAY simulations. Alternatively, you can drag&drop the spectrum to the Collect and Data
Factory utilities.

If the spectral range of the SPRAY simulation covers the visible spectral range you might be
interested in the color corresponding to the recorded spectrum. Pressing the Color button (see the
dialog of the geometrical parameters above) opens a small window showing color information:

SPRAY70

© 2001 Wolfgang Theiss

This window is exactly the same as the one used to display color information in our Coating Designer
(CODE) thin film software. Please consult the CODE manual for details. The detected spectrum is
treated like a reflectance or transmittance spectrum of a layer stack, and the color coordinates are
computed using the selected illuminating spectrum (Here: D65). SPRAY computes and displays
X,Y,Z, L*, a* and b*. The color coordinates are converted to RGB values in order to paint a
rectangle (upper right section of the window). This gives only a rough, qualitative impression of the
color since the conversion is done in a simple, not very accurate way. The lower section shows a
rectangle with the same a* and b* values, but a user-defined L* value which you can vary by moving
the slider. If the original L* value is too small the color impression on the screen may appear to be
almost black, and you can use the slider to get a brighter version of the color.

Of course, you can use as many detectors as you like in a SPRAY scenery.

Access by OLE automation
OLE automation controllers can modfiy a rectangular detector named 'MyName' in the SPRAY
object list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of the position
object_parameter("MyName", "y"): read/write the y-coordinate of the position
object_parameter("MyName", "z"): read/write the z-coordinate of the position

object_parameter("MyName", "x1"): read/write the x-coordinate of vector 1
object_parameter("MyName", "y1"): read/write the y-coordinate of vector 1
object_parameter("MyName", "z1"): read/write the z-coordinate of vector 1

object_parameter("MyName", "x2"): read/write the x-coordinate of vector 2
object_parameter("MyName", "y2"): read/write the y-coordinate of vector 2
object_parameter("MyName", "z2"): read/write the z-coordinate of vector 2

object_parameter("MyName", "color_x"): read the color coordinate x

Geometric objects 71

© 2001 Wolfgang Theiss

object_parameter("MyName", "color_y"): read the color coordinate y
object_parameter("MyName", "color_z"): read the color coordinate z
object_parameter("MyName", "l_star"): read the color coordinate l_star
object_parameter("MyName", "a_star"): read the color coordinate a_star
object_parameter("MyName", "b_star"): read the color coordinate b_star
object_parameter("MyName", "color_r"): read the color coordinate R
object_parameter("MyName", "color_g"): read the color coordinate G
object_parameter("MyName", "color_b"): read the color coordinate B

simple_detector_value("MyName",2200): read the detected fraction at 2200 1/cm

5.3.1.2 Screen

Screens measure and display the intensity distribution of radiation like CCD cameras. A rectangle
that can be positioned anywhere in the scenery is filled with a two-dimensional array of small
rectangular pixels. Each pixel counts incoming rays, independent of frequency. After a SPRAY
simulation the pixel signals are displayed using gray levels to indicate the measured number of rays -
this way intuitive pictures of the intensity distribution are obtained.
The geometrical settings are done in the following dialog:

The vectors 'Location', 'Vector 1' and 'Vector 2' define the rectangle as explained for the
rectangular light source. In the section 'Resolution' you can set the number of pixels to be used in
the two directions: The pixels in the direction of 'Vector 1' will be drawn horizontally, those in the
'Vector 2' direction vertically. The 'Gray levels' parameter determines how many different gray

SPRAY72

© 2001 Wolfgang Theiss

levels are used for the drawing of each pixel.
If you check the 'Absorbing' item, the rays hitting the screen will be absorbed. If not, they are
counted and transmitted without any modification.
If 'on both sides' is activated the rays are counted independent of their direction. If this property is
turned off, only those rays are counted that approach from the side into which the surface normal
points.
The 'View Data' button opens the graphics window displaying the intensity distribution:

The window informs you about the number of rays that passed the screen (and the ratio of the total
number of rays counted by the screen to the number of rays sent by the light source).
With the 'red lines' option in the Graphics menu you can turn on/off red lines separating the individual
pixels:

Geometric objects 73

© 2001 Wolfgang Theiss

Clicking the right mouse button somewhere in the graph opens a slider to modify the gray levels:

SPRAY74

© 2001 Wolfgang Theiss

Moving the slider you can set the number of rays/pixel that is used as 100% (white color) for the
picture. This way you can generate pictures with different 'brightness' to view the data at various
intensity levels:

Geometric objects 75

© 2001 Wolfgang Theiss

Access by OLE automation
OLE automation controllers can modfiy a screen named 'MyName' in the SPRAY object list by the
following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of the position
object_parameter("MyName", "y"): read/write the y-coordinate of the position
object_parameter("MyName", "z"): read/write the z-coordinate of the position

object_parameter("MyName", "x1"): read/write the x-coordinate of vector 1
object_parameter("MyName", "y1"): read/write the y-coordinate of vector 1
object_parameter("MyName", "z1"): read/write the z-coordinate of vector 1

object_parameter("MyName", "x2"): read/write the x-coordinate of vector 2
object_parameter("MyName", "y2"): read/write the y-coordinate of vector 2
object_parameter("MyName", "z2"): read/write the z-coordinate of vector 2

SPRAY76

© 2001 Wolfgang Theiss

5.3.1.3 Arrays

5.3.1.3.1 Linear array

Linear arrays are collections of rectangular detectors placed one after the other in a row. You can
create a linear detector array selecting the new object type 'Array detector I' in the list of objects
and then pressing the '+' button.
The geometric properties of linear arrays are defined in the following dialog:

The vectors Location, Vector 1 and Vector 2 define the total rectangle covered by the array, as
described previously for rectangular light sources. The large rectangle is divided into individual pixels
along the direction of vector 1. The number of pixels is set by the parameter '# Pixels'. The example
given in the dialog above means the following: The pixel array has total dimensions of 0.3 cm along
the x-axis and 0.04 cm along the y-axis. There are 30 pixels each of which has a length of 0.01 cm in
x-direction and a width of 0.04 cm in the y-direction.
If Absorbing is checked incoming rays are counted by the corresponding pixel and absorbed.
Otherwise rays are counted but transmitted without any modification.
If on both sides is checked all rays are counted hitting the array both from the frontside and the
backside. If not, only those rays arriving from the side of the surface normal are registered.
After a SPRAY simulation you can inspect the detector signals for all pixels pressing the View data
button. A window identical to the main window of our Collect utility program opens:

Geometric objects 77

© 2001 Wolfgang Theiss

With Collect you can represent data in 3D and 2D graphs (see the section about the use of the
workbook in the SCOUT technical manual for more details about Collect graphs).
In 2D graphs you can compare spectra of selected pixels as shown below if you de-select spectra in
the list of spectra (that opens by the Show list command):

SPRAY78

© 2001 Wolfgang Theiss

The corresponding 2D graph is the following:

Geometric objects 79

© 2001 Wolfgang Theiss

Access by OLE automation
OLE automation controllers can modfiy a linear array detector named 'MyName' in the SPRAY
object list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of the position
object_parameter("MyName", "y"): read/write the y-coordinate of the position
object_parameter("MyName", "z"): read/write the z-coordinate of the position

object_parameter("MyName", "x1"): read/write the x-coordinate of vector 1
object_parameter("MyName", "y1"): read/write the y-coordinate of vector 1
object_parameter("MyName", "z1"): read/write the z-coordinate of vector 1

object_parameter("MyName", "x2"): read/write the x-coordinate of vector 2
object_parameter("MyName", "y2"): read/write the y-coordinate of vector 2
object_parameter("MyName", "z2"): read/write the z-coordinate of vector 2

5.3.1.3.2 Spherical detector arrays

So-called 'Spherical detector arrays' are collections of detectors used to record the angular
dependence of radiation. You can create a spherical detector array selecting the new object type

SPRAY80

© 2001 Wolfgang Theiss

'Array detector III' in the list of objects and then pressing the '+' button.
The individual pixels of spherical detector arrays are sphere segments that divide the sphere
according to the following scheme:

The geometric parameters are set in the following dialog:

Location denotes the center of the sphere, Vector 1 the direction for which the angle is 0°. At the
same time, the length of vector 1 is the sphere radius.
The parameter # Pixels sets the number of sphere segments to be used. If - as shown above - you
use 18 pixels the angle resolution is 10°.

Geometric objects 81

© 2001 Wolfgang Theiss

The following example shows how spherical detector arrays can be used to record the angular
dependence of scattered radiation. Consider the simple example of a water sphere illuminated by
sunlight from the left:

To 'measure' the angle dependence of the radiation you can place a huge spherical detector array
(with a radius 100 times larger) around the water sphere. Using 180 pixels you will get an angular
resolution of 1°. However, since some of the sphere segments (those close to 0° and 180°) will have
a small area, you will need a lot of rays in order to get a significantly low noise level. Doing a
SPRAY simulation with 10000 rays/spectral point in the range 400 to 700 nm with 31 spectral
points (i.e. 10 nm wavelength resolution) the following angle distribution is obtained for a water
sphere of 10 micron radius:

SPRAY82

© 2001 Wolfgang Theiss

Increasing the number of rays to 1000000 /spectral points a much smoother distribution is obtained:

Geometric objects 83

© 2001 Wolfgang Theiss

There is large forward scattering contribution and a sharp peak of radiation around 140°. The latter
is the origin of the rainbow, of course. As you can see the peak for red light (700 nm) occurs at a
slightly lower angle as for blue light (400 nm). Watching water spheres in the sky with the sun behind
you a strong contribution of red light comes from a different direction than the blue maximum, with all
other colors in between.
You can also reproduce the second rainbow (scattering angles around 130°) which shows the
reverse sequence of colors. In between the two rainbows there is a dark zone with almost no
radiation:

SPRAY84

© 2001 Wolfgang Theiss

Generating RT files for spheres with spherical detector arrays
You can use spherical detector arrays to generate single scattering data for spheres that you can later
use for multiple scattering investigations in scatterers. You must be aware, however, that you are
using ray-tracing to do so which may lead to wrong results in some cases. For example, you will miss
phase effects (interference of partial waves) in the angle distribution. Also, you will miss the refraction
of radiation 'around' the sphere which leads for large spheres to a very intense, but narrow forward
scattering peak.
However, there are also a large number of cases where the ray-tracing approach is very useful to
determine single scattering characteristics. Here are some rules for RT file generation with SPRAY:

· Use a circular light source which creates a parallel light bundle with exactly the same radius as the
sphere (i.e. the light source radius equals the sphere radius and the cone angle of the light source is
0°)

· The sphere may be covered with an arbitrary multilayer stack as long as the total thickness of the
coating is much smaller as the sphere radius

· The direction of 0° of the spherical detector array must be in the direction of the light source
emission

· The light source should be transparent

Geometric objects 85

© 2001 Wolfgang Theiss

· Do the simulation using a spectral range defined in wavenumbers
· Use 180 pixels

After the SPRAY simulation finishes you have to open the dialog of the sphere detector (see above)
and select the menu item called 'Create RT'. You will be asked for the sphere radius and the
refractive index of the surrounding medium. Finally you are asked for the filename of the RT file to be
saved. The RT file can then be re-imported by General scatterer objects.

5.3.2 Volume detectors

These detectors count rays which are absorbed in a volume.

5.3.2.1 Grave

This is a rectangular box object which counts all rays which end inside by absorption. You may call
this kind of object "voxel".
Normalizing to the number of emitted rays for each spectral position an absorption spectrum is
computed after the ray-tracing.

5.3.2.2 Cemetery

A cemetery is an array of grave objects. After the ray-tracing you will have an array of absorption
spectra.

5.3.2.3 Absorbing material

Although managed by the list of geometry objects, objects of this type are not really geometric
objects - they do not have geometric dimensions. Instead they count how many rays are absorbed
by one of the materials. The material is assigned by drag&drop from the list of materials.
After the ray-tracing the absorption spectrum is computed by normalizing the absorbed rays to the
number of emitted rays for each spectral position.

Please note that 'Absorbing material' objects count only those absorption events which occur inside a
macroscopic volume. Absorption inside thin films of interfaces is not taken into account.

Objects of this type have been introduced to SPRAY in order to be able to 'record' absorption
spectra of silicon wafers with textured surface.

5.4 Interface objects

5.4.1 Overview

The following geometrical objects in SPRAY may be covered by simple pre-defined interfaces or
user-defined interfaces (details of interfaces have been given above). The objects are divided into
two classes: Some (like spheres or solid cylinders) completely enclose a certain volume with their
surface. These are called Closed volumes. Others (like rectangles or circles) are referred to as
'Open structures'. These objects cannot enclose a volume alone.

'Open' structures:

SPRAY86

© 2001 Wolfgang Theiss

· Rectangle
· Triangle
· Circle
· Sphere segment
· Cylinder (open)
· Cone
· Ellipsoid segment
· Paraboloid
· Circular aperture
· User-defined surface: Rectangular basis
· User-defined surface: Circular basis

Closed volumes
· Sphere
· Cylinder (closed)
· Rectangular box
· Prism
· ATR crystal
· Converging lens
· Diverging lens

5.4.2 Rectangular interface

Objects of this type are rectangles the geometry of which is defined in the following dialog:

The meaning of the vectors is exactly the same as explained for rectangular light sources.
The dropdown-box below 'User-defined' let's you select between a perfectly absorbing, perfectly

Geometric objects 87

© 2001 Wolfgang Theiss

reflecting or a user-defined interface. If you choose 'Dielectric interface' you have to drag&drop an
entry of the list of interfaces to the text label to the right of 'Interface:'. In the example shown above
the interface named 'air / glass' is selected to cover the rectangle. The interface is simply the
boundary between two halfspaces of air and glass, respectively:

In a rendered view this rectangle looks like this (illumination from the air side, refraction into the glass
side):

If an interface is a boundary between two different materials (like in the example shown above) you
as SPRAY user are responsible for consistency: Under no circumstance should a ray return from the
glass side back into air without passing another interface. This is physically impossible, of course, and
your model should be setup in a way that unphysical situations are avoided.
The safest and best way to do realistic simulations is to completely enclose a material with interfaces,
e.g. to build a closed volume with several rectangular interfaces (see also the pre-defined 'volume
objects' below). However, you can shortcut and work with 'open structures' like the interface in the
picture above if you are sure that definitely no ray will return once it travels on the glass side.

Access by OLE automation
OLE automation controllers can modfiy a rectangular interface named 'MyName' in the SPRAY
object list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of Location

SPRAY88

© 2001 Wolfgang Theiss

object_parameter("MyName", "y"): read/write the y-coordinate of Location
object_parameter("MyName", "z"): read/write the z-coordinate of Location

object_parameter("MyName", "x1"): read/write the x-coordinate of vector 1
object_parameter("MyName", "y1"): read/write the y-coordinate of vector 1
object_parameter("MyName", "z1"): read/write the z-coordinate of vector 1

object_parameter("MyName", "x2"): read/write the x-coordinate of vector 2
object_parameter("MyName", "y2"): read/write the y-coordinate of vector 2
object_parameter("MyName", "z2"): read/write the z-coordinate of vector 2

5.4.3 Triangle

Triangles are defined specifying one corner (called 'Point 1') and two vectors from that corner to the
other corners (called 'Vector 1' and 'Vector 2'). The cross product of vector 1 and vector 2 is the
surface normal of the triangle. The settings are done in the following dialog:

Geometric objects 89

© 2001 Wolfgang Theiss

The definition of the interface covering the triangle is the same as explained for rectangles.

Access by OLE automation
OLE automation controllers can modfiy a triangular interface named 'MyName' in the SPRAY
object list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of Point 1.
object_parameter("MyName", "y"): read/write the y-coordinate of Point 1.
object_parameter("MyName", "z"): read/write the z-coordinate of Point 1.

object_parameter("MyName", "x1"): read/write the x-coordinate of vector 1
object_parameter("MyName", "y1"): read/write the y-coordinate of vector 1
object_parameter("MyName", "z1"): read/write the z-coordinate of vector 1

object_parameter("MyName", "x2"): read/write the x-coordinate of vector 2
object_parameter("MyName", "y2"): read/write the y-coordinate of vector 2
object_parameter("MyName", "z2"): read/write the z-coordinate of vector 2

5.4.4 Circle

Circular interfaces (create an object of type 'Interface circular stop') are defined in the following
dialog:

Location points to the center of the circle, Normal Vector is the surface normal, and Radius the
radius of the circle.

The definition of the interface covering a circle is the same as explained for rectangles.

SPRAY90

© 2001 Wolfgang Theiss

5.4.5 Sphere

These objects are spheres the parameters of which are set in this dialog:

Location is the center of the sphere, Radius the radius (of course).

The definition of the interface covering the sphere is the same as explained for rectangles.

5.4.6 Sphere segment

Objects of this type are sphere segments, defined by the center of the sphere, the symmetry axis and

Geometric objects 91

© 2001 Wolfgang Theiss

two angles QMin and QMax according to the following scheme:

Vector to sphere center

Sphere segments

Vector of
Q

Min

Q
Max

 symmetry axis

The dialog to set the object's parameters is this:

Here Location is the vector to the center of the sphere. The Radius vector points along the
symmetry axis. Its length equals the radius of the sphere. The two angles are Qmin and Qmax (top
and bottom, respectively), given in degrees. The angle range is 0°... 180°.

The definition of the interface covering sphere segments is the same as explained for rectangles.

SPRAY92

© 2001 Wolfgang Theiss

5.4.7 Cylinder (closed)

Closed cylinders are defined in dialogs like this:

Location is the vector to the center of the cylinder. The Axis vector points along the main
symmetriy axis (the red arrow in the sketch below) whereas the Radius vector points from the
center to the cylindrical surface (black arrow). Axis vector and radius vector must be perpendicular
to each other.

Geometric objects 93

© 2001 Wolfgang Theiss

The definition of the interface covering cylinders is the same as explained for rectangles. The
cylindrical surface as well as the two circular areas have the same interface. If you need different
interfaces, you have to use a combination of an open cylinder and two circular interfaces.

Access by OLE automation
OLE automation controllers can modfiy a closed cylinder named 'MyName' in the SPRAY object
list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of Location.
object_parameter("MyName", "y"): read/write the y-coordinate of Location.
object_parameter("MyName", "z"): read/write the z-coordinate of Location.

object_parameter("MyName", "x1"): read/write the x-coordinate of Radius vector.
object_parameter("MyName", "y1"): read/write the y-coordinate of Radius vector.
object_parameter("MyName", "z1"): read/write the z-coordinate of Radius vector.

object_parameter("MyName", "x2"): read/write the x-coordinate of Axis vector.
object_parameter("MyName", "y2"): read/write the y-coordinate of Axis vector.
object_parameter("MyName", "z2"): read/write the z-coordinate of Axis vector.

SPRAY94

© 2001 Wolfgang Theiss

5.4.8 Cylinder (open)

Open cylinders are - of course - very similar to closed cylinders discussed above. Only the two
circular areas closing the cylinder at its top and bottom side are missing.

5.4.9 Cone

Cone objects are similar to open cylinders, with the difference that the radius of the cylinder changes
linearly from one end to the other. Cones are defined by setting the two end points and the two radii
of the circles at each end. Here is an example:

Geometric objects 95

© 2001 Wolfgang Theiss

The cone defined by these settings looks from side like this:

Illuminated by a parallel beam from the left shows the concentrating effect of cones:

SPRAY96

© 2001 Wolfgang Theiss

5.4.10 Rectangular box

This type of object (select object type Quader) is a rectangular box the geometry of which is
defined as follows:

The parameters have the same meaning as those explained for volume light sources.

The definition of the interface covering the box is the same as explained for rectangles. All 6
rectangles have the same interface, with the surface normal pointing outward. The picture below
shows some rays travelling through a glass brick:

Geometric objects 97

© 2001 Wolfgang Theiss

5.4.11 Prism

Prism objects are based on a triangle. The volume of the prism is created by moving the base triangle
along a vector called height vector. In most cases the height vector will be perpendicular to the
triangle but it need not be. The parameters of prisms are set in dialogs like the following:

SPRAY98

© 2001 Wolfgang Theiss

Location, Vector 1 and Vector 2 define the base triangle as describe previously for flat triangles.
Height vector gives the direction and size of the shift of the triangle. Note that the shift is done in
both directions, upwards and downwards. In the example given above the total height of the prism in
z-direction is 2 cm.

The definition of the interface covering the prism is the same as explained for rectangles. All 5 prism
'subsurfaces' have the same interface, with the surface normal pointing outward. The picture below
shows some rays travelling through a glass prism:

Geometric objects 99

© 2001 Wolfgang Theiss

5.4.12 ATR crystal

Recording ATR (Attenuated Total Reflection) spectra is a standard technique in infrared
spectroscopy. In order to simulate ATR experiments (which regularly raise questions to be answered
by spectroscopic ray-tracing) a very special volume object called 'ATR crystal' has been
implemented in SPRAY. The dialog to set the object's parameters is this:

The parameter have the following meaning. Location, Vector 1 and Vector 2 define a base
rectangle as described before. Along Vector 3 (which should be perpendicular to Vector 1 and
Vector 2) the rectangle is moved a distance given by the length of Vector 3. During this 'motion' the
length of the rectangle (size in direction of Vector 1) is decreased (see below). Finally, the base
rectangle is moved in the negative Vector 3 direction increasing its size. This way the shape of the
ATR crystal is obtained:
The following sequence of side views (plane of Vector 1 and Vector 3) shows how the decrease/
increase of the rectangle is controlled by the parameter Angle which sets the angle of the lower left

SPRAY100

© 2001 Wolfgang Theiss

corner of the ATR crystal. The test rays are send to a silicon prism (refractive index 3.4):

45° :

20°

80°

You can assign different interfaces to the top, bottom and side surfaces of the ATR crystal. Only
user-defined interfaces (dragged&dropped from the list of interfaces) are allowed.

Geometric objects 101

© 2001 Wolfgang Theiss

5.4.13 Ellipsoid segment

Segments of ellipsoids are often used in spectroscopy because they have two focal points. They are
ideal elements for the transportation of radiation from one point in space (first focal point) to another
(second focal point).
Ellispoids in SPRAY are defined in two steps: First the full ellipsoid is defined specifying the center
and three vectors (perpendicular to each other) that point from the center into the three principal
directions:

SPRAY102

© 2001 Wolfgang Theiss

This way you describe the full ellipsoid:

With the Show box data command you open a second dialog which defines a rectangular box:

Location is the center of the box, Vector 1, 2 and 3 start at the center and point to the centers of
three adjacent rectangles, as already shown for volume light sources.
The ellipsoid segment is now defined by those parts of the ellipsoidal surface which are inside the
rectangular box:

Geometric objects 103

© 2001 Wolfgang Theiss

The definition of the interface covering ellispoids is the same as explained for rectangles.

5.4.14 Paraboloid segment

Parabolic objects are called 'Paraboloid segments' in SPRAY. They are defined in two steps. First a
paraboloid surface is defined using four vectors, then a rectangular box is defined with four vectors
as well. Only those parts of the paraboloid surface are taken that are inside the box.
The dialog to define the paraboloid is this:

SPRAY104

© 2001 Wolfgang Theiss

The center of the paraboloid is given by the vector called 'Location', the symmetry axis is defined
by vector 3. Vectors 1 and 2 must be perpendicular to vector 3. The length of vector 1 determines
the distance you have to go in the direction of vector 1 (starting at the center) in order to reach a
height of 1 (measured in the direction of vector 3, with respect to the plane spanned by vector 1 and
 vector 2). The meaning of vector 2 is the same (only in the direction of vector 2).
The above settings lead to the following paraboloid:

Setting the box parameters one can now cut out the wanted piece of the paraboloid. The dialog is
opened by the Show box data command:

This cuts out an off-axis paraboloid segment. The new piece is this:

Geometric objects 105

© 2001 Wolfgang Theiss

Sending a parallel beam downwards from above the mirror one gets a nice focus (which is the task
of parabolic mirrors):

The definition of the interface covering paraboloids is the same as explained for rectangles.

SPRAY106

© 2001 Wolfgang Theiss

5.4.15 Circular aperture

Objects of this type (select object type Interface circular aperture) are rectangles with a circular
aperture in the center. The objects' parameters are set in the following dialog:

In addition to the parameters of 'normal' rectangles (see above) there is the Radius of Aperture,
which is the radius of the circular aperture, of course.

The definition of the interface covering the surface is the same as explained for rectangles.

5.4.16 Converging lens

These objects are composed of two sphere segments. Assigning an appropriate layer stack to the
interface (e.g. an air-glass transition) you can define a lens:

Geometric objects 107

© 2001 Wolfgang Theiss

The dialog to set the object's parameters is this:

The parameters of the dialog are explained using the following side view of a converging lens:

SPRAY108

© 2001 Wolfgang Theiss

The horizontal line is the symmetry axis of the lens. The centers of both sphere segments are on this
line. You define this direction by the Orientation vector.
The vertical line represents the plane where the two sphere segments are 'glued' together. Radius 1
gives the radius of the sphere segment shown on the right side. The center of this sphere is on the
left. Radius 2 is the radius of the sphere segment on the left. The parameter called Radius of the
lens is the radius of the circle common to both sphere segments: This number determines the size of
the lens.
Location gives the intersection of the horizontal and vertical line, i.e. it lies on the symmetry axis and
in the plane where the two sphere segments are put together.

Note that Radius 1 and Radius 2 must always be larger than Radius of the lens.

The definition of the interface covering lenses is the same as explained for rectangles.

5.4.17 Diverging lens

Diverging lenses are - similar to converging lenses - composed of two sphere segments. In addition,
there is a cylindrical 'envelope'. The parameters are set in the following dialog:

Geometric objects 109

© 2001 Wolfgang Theiss

The meaning of the parameters is explained using the following construction of the final lens:

1.
Start with a cylinder. It has a radius given by Radius of lens and a thickness given by Thickness.
The cylinder is centered around the vector Location. Its symmetriy axis is given by the direction
Orientation:

2.
Now add on the left side a sphere segment. The center of the sphere is on the symmetry axis of the
cylinder, the radius is given by Radius 1. The distance of the sphere center to the left side of the
cylinder is given by Radius 1 as well - the sphere segment just touches the cylinder:

SPRAY110

© 2001 Wolfgang Theiss

3.
Finally add the sphere segment on the right:

Note that Radius 1 and Radius 2 must always be larger than Radius of lens.
If you choose a large value of thickness the lens becomes an optical fiber:

Geometric objects 111

© 2001 Wolfgang Theiss

All three surfaces (the two sphere segmenst as well as the cylinder) are covered with the same
interface. The definition of that interface is the same as explained for rectangles.

5.4.18 User-defined surface: Rectangular basis

Objects of this type (select object type Interface curved I) implement almost arbitrary surfaces -
created by a two-dimensional function defined over a rectangular basis. The dialog is this:

The parameters are the same as already explained for the rectangle. In addition, there is a user-
defined Function that creates the surface shape. As variables you can use X and Y: X represents the
distance from Location (the center of the rectangle) in direction of Vector 1, Y the distance in
direction of Vector 2. As all geometrical distances, X and Y are measured in cm. The terms you can
use in a formula are described in the Data Factory manual which is distributed with SPRAY.

The parameters shown above lead to the following surface shape:

SPRAY112

© 2001 Wolfgang Theiss

Sending some test rays (air - glass interface):

Here is another example, showing a side view of the sinusoidal surface profile defined by
0.3*SIN(X*4*PI). Again, the interface is between air and glass, and the illumination is from the
upper left:

The definition of that interface covering the user-defined surface is the same as explained for
rectangles.

Access by OLE automation
OLE automation controllers can modfiy an object of type 'Interface Curved I' named 'MyName' in

Geometric objects 113

© 2001 Wolfgang Theiss

the SPRAY object list by the following OLE commands:

object_parameter("MyName", "x"): read/write the x-coordinate of Location
object_parameter("MyName", "y"): read/write the y-coordinate of Location
object_parameter("MyName", "z"): read/write the z-coordinate of Location

object_parameter("MyName", "x1"): read/write the x-coordinate of vector 1
object_parameter("MyName", "y1"): read/write the y-coordinate of vector 1
object_parameter("MyName", "z1"): read/write the z-coordinate of vector 1

object_parameter("MyName", "x2"): read/write the x-coordinate of vector 2
object_parameter("MyName", "y2"): read/write the y-coordinate of vector 2
object_parameter("MyName", "z2"): read/write the z-coordinate of vector 2

object_parameter_string("MyName", "surface_formula"): read/write the function definition as string

5.4.19 User-defined surface: Circular basis

Objects of this type (select object type Interface curved II) are very similar to user-defined
interfaces on a rectangular basis that were discussed before. The difference is the shape of the basis
which is a circle instead of a rectangle. The dialog to set the objects' parameters is this:

Location defines the center of the circle over which the surface profile is computed. Normal
Vector is the surface normal, and Radius the radius of the circle.
The Function describes how the surface profile, i.e. the height of the curce, depends on the distance
from the center. This distance must be called 'R' in the formula. The example leads to the following
surface:

SPRAY114

© 2001 Wolfgang Theiss

Some test rays (air-glass interface) show the consequences:

As the following example shows, user-defined interfaces with circular basis can be combined with
open cylinders to study various shapes of fiber heads:

Geometric objects 115

© 2001 Wolfgang Theiss

The definition of that interface covering the user-defined surface is the same as explained for
rectangles.

5.4.20 Periodic surface texture

This object type allows easy modeling of surfaces with periodic macroscopic texture. Typically it is
used for glass or plastic surfaces.
The basic shape is a rectangle which is divided into many small rectangles. Each of the small
rectangles has the same surface topology. You can select from several pre-defined textures.
The object dialog looks like this:

SPRAY116

© 2001 Wolfgang Theiss

The top editors are used to define the location and size of the base rectangle. The definition of the
interface is the same as for all other interface objects.
The second half of the dialog allows the user to define the type of texture in the dropdown box as
well as the texture period in x- and y-direction. Both quantities are entered in cm.
The amplitude of the texture (also defined in cm) determines the difference between the highest and
the lowest point of the surface shape. Depending on the selection of the texture type there are more
parameters shown at the bottom of the dialog.

The following texture types are available:

Product of sine profiles in x- and y-direction:

Geometric objects 117

© 2001 Wolfgang Theiss

Sine profiles in x-direction (or in y-direction)
Pyramids:

SPRAY118

© 2001 Wolfgang Theiss

Inverted pyramids:

Geometric objects 119

© 2001 Wolfgang Theiss

Cones:

SPRAY120

© 2001 Wolfgang Theiss

Inverted cones:

Geometric objects 121

© 2001 Wolfgang Theiss

Half spheres:

Inverted half spheres:

SPRAY122

© 2001 Wolfgang Theiss

5.4.21 Complex objects

5.4.21.1 Complex objects: Introduction

Objects of this type are composed of several subobjects of simple shapes (rectangles, triangles,
circles, ...). It is recommeded to use this object type if you have to work with many interface objects
of the same shape or if you want to group objects for easier manipulation.
If you edit complex objects the following window opens:

When subobjects are created (see below) they are shifted from their original position by the vector
specified here as 'Offset'. All newly created objects are automatically covered with the interface
defined in this dialog. You can change the interface assignment later, if you like (see below).
The subobjects are handled by a list which is opened clicking the Objects button:

Subobject creation

Geometric objects 123

© 2001 Wolfgang Theiss

Subobjects are created by importing geometry information from text files of workbook sections. The
structure of the text files and corresponding workbook sections is identical. It is a simple sequence of
lines where each line holds the information of one object to be created. If text files are used the
individual items in a line must be separated by tab stops. In workbook sections the individual items
are stored in corresponding cells, of course. Every line has to start with the specification of the object
type that is to be created. Then the required coordinates follow in a sequence which is described
below. The recommended extension for the text files is *.ol (for object list). Here is an example of a
text file defining a sphere and a rectangle:
sphere 5 0 0 3
rectangle vectors -2 0 0 1 0 0 0 0 1

Use the Import command to load object information from text files. You are then asked to select a
file. Make sure you specify the file type 'Object list' which is the first import filter.
After the file is processed the object list looks like this:

In a view, these objects look like this:

If you set the y-coordinate of the Offset vector (see above) to 10 cm and import the object
information from the text file again, you obtain a shifted copy of the objects:

SPRAY124

© 2001 Wolfgang Theiss

Besides reading subobject information from text files you can read from the workbook. Open the
workbook with the Workbook|Show command and select the row from which you want to start to
import subobjects. In this case, it's cell A1:

Now apply Workbook|Import. The four new objects are added to the subobject list.

Remove subobjects
Like in any other SPRAY list, you can delete subobjects by selecting their rows and clicking the '-'
button. Alternatively you can execute the menu command Delete|Delete selected . The command
Delete|Delete all obviously deletes all objects.

Modify interface assignment
Once you have created a list of subobjects you can change the interface assignment in one step for
all subobjects, or individually.
A global change is done this way: Open the complex object's window

Geometric objects 125

© 2001 Wolfgang Theiss

 and select the wanted interface. Then go to the subobject list and execute the command Modify|
Assign interface to all objects. This will just do what it says.
To do individual assignments, first select the subobject that you want to assign a different interface to.
Pressing the function key F6 (or F7) you can toggle between 'Ideal mirror', 'Ideal absorber' or a
user-defined interface. If a user-defined interface is selected, you can iterate through all user-defined
interfaces by the F4 and F5 functions keys (forward or backward, respectively).

The following section gives details about the implemented types of subobjects that can be used in
complex objects.

Warning: Using complex objects you can easily add many objects to the SPRAY configuration.
This can dramatically increase the computational time for SPRAY spectra.

5.4.21.2 Complex objects: Subobject types

These subobject types are available:

Rectangle
These objects can be defined in two ways:

1.
Define the center and the two perpendicular vectors that span the rectangle (as described in the
section about rectangular interfaces). In this case the definition line has to start with the keyword
'Rectangle vectors'. Then the location and the two directional vectors follow, as in the following
example:

rectangle vectors -2 0 -5 1 0 0 0 0 1

Note that the coordinates must be separated by tab stops if they are stored in text files.

2.

SPRAY126

© 2001 Wolfgang Theiss

Sometimes it is more appropriate to specify the four corners of a rectangle. This can be done using
the keyword 'Rectangle points' which must be followed by the coordinates of the four corners. In
order to get the correct surface normal you can work with the following trick:
· Imagine you sit in the center of the rectangle
· Move up a little along the wanted surface normal
· Turn around and look back on the rectangle below you
· Start with one of the corners as first point and then add the others counterclockwise
An example of this data format is this:
rectangle points 0 0 0 2 0 0 2 5 0 0

5 0

Triangle
Here you have two possibilities as well, using spanning vectors or end points:

1.
As described in the section about triangular interfaces, the triangle is defined with a vector to one of
the corners as a reference point and the two vectors from that point to the remaining corners. The
surface normal is given by the cross product of the two vectors. Here is an example:

triangle vectors 0 0 -5 1 0 0 0 0 1

2.
You can also write down the three corners, using the same orientation rule as explained for
rectangles (see above). An example is given here:

triangle points 0 0 0 2 0 0 2 5 0

Circle
Circles are defined by their center, their surface normal and the radius:

circle -3 0 0 0 0 1 0.34

Sphere
Spheres are simple defined by the center coordinates followed by the radius:

sphere -3 0 0 0.5

Cylinder
This object type is a closed cylinder, defined the usual way by specifying the center, the radius vector
and the axis vector:

cylinder 20 0 0 0 0 1 4 0 0

Geometric objects 127

© 2001 Wolfgang Theiss

Ellipsoid
This subobject type defines full ellipsoids, specified by the center and the three principal directions:

ellipsoid -10 0 0 0 0 2 0 2 0 0 0
3

Cone
This subobject type defines a cone, specified by the two end points and the corresponding radii of
the circles at each end:

cone -5 0 0 5 0 0 2 0.5

5.4.21.3 Complex objects: Creating input data

Workbook
The easiest way to create input data is to use the workbook and its built-in functions. If you, for
example, want to create a sequence of spheres with increasing radius, start with the first sphere in the
first row by typing in its coordinates explicitly:

Now select the cells that define the first sphere and use the Copy command to copy them to the
clipboard. Move the cursor into cell A2 and execute Paste. Now you have a copy of the first
sphere:

Replace the content of cell B2 with the formula '=B1+4' and that of cell E2 with '=E1*1.05'. Now
the workbook should look like this:

SPRAY128

© 2001 Wolfgang Theiss

The second sphere is shifted along the x-axis by 4 cm and its size is increased by 5%.
Now select the workbook range A2:E2:

You can now create many copies of the selected cells by dragging down the small black square at
the bottom right corner of cell E2. The data and formulas are copied downwards until you release
the mouse button. The workbook now could look like this:

Geometric objects 129

© 2001 Wolfgang Theiss

Now you can import the new objects into the complex objects the way described above. Here is the
result:

External programs
In many cases it is advantegeous to use a programming language to compute the geometric data for
complex objects. You could use, for example, Excel's VisualBasic to compute the required input
tables for SPRAY. If you have to do this only a few times, you can copy the tables manually to the
clipboard and paste them into the SPRAY workbook.
If you have to copy the computed data many times into SPRAY you should create text files with the
input data and import them into the complex object of SPRAY by OLE automation. The necessary
OLE automation commands will be implemented soon.

5.4.21.4 Importing objects from CAD programs

You can import objects from CAD systems into SPRAY if your construction software can generate
a mesh of triangles and export the coordinates using the STL format. Here is a screenshot of the MoI
software used to generate a bended fiber:

SPRAY130

© 2001 Wolfgang Theiss

When saving the fiber as a mesh of triangles be sure that the number of triangles is not too
high - otherwise SPRAY computations will take a very long time, and camera views will be
extremely slow!
So please try to find a reasonable compromise of quality and time efficiency.

Geometric objects 131

© 2001 Wolfgang Theiss

Once you have generated a STL file, you can import the data into SPRAY objects of type 'Complex
object' using the Import command in its object list and selecting one of the STL formats (binary or
Ascii). The triangle data are expected to give dimensions in mm. SPRAY takes the three nodes of
each triangle in the sequence given by the STL file, and computes the surface normal according to
the right hand rule - it ignores the surface normal specified in the STL data.
The following graphs show the behaviour of a glass fiber import from the MoI software illuminated
from the bottom:

SPRAY132

© 2001 Wolfgang Theiss

Geometric objects 133

© 2001 Wolfgang Theiss

5.5 Special objects

5.5.1 Overview

The following special objects are implemented in SPRAY at present:

· Polarizer

5.5.2 Polarizer

Polarizers are rectangles which are defined this way:

The meaning of the parameters is the same as explained previously for rectangular light sources
(where the term Vector 1 is used instead of Polarizing vector).

In ray-tracing simulations polarizers act as ideal polarizing rectangles: If a ray hits the rectangle the
projection of its polarization vector into the direction of the Polarizing vector is computed. The
absolute value of the projection is a number between 0 and 1. Then a random number between 0
and 1 is taken and compared to the projection. If the random number is larger the ray is absorbed.
Otherwise the ray is transmitted with a polarization vector in the direction of the Polarizing vector.

SPRAY134

© 2001 Wolfgang Theiss

6 Cameras

6.1 Overview

Cameras take pictures of the present geometric scenery in SPRAY. They are used to check the
setup and to visualize its performance watching the path of some test rays. Of course, cameras are
also valuable for the documentation of SPRAY results.
Cameras are managed by a list which you open clicking the Cameras button in the main window of
SPRAY:

You can create as many cameras as you like. At present, the following types of cameras are
implemented:

· Rendered views

6.2 Rendered view

Rendered views are 'photographs' of the SPRAY setup taken the following way. Rays from the
observation point are drawn through each pixel of the observation window. The closest hitpoint with
an object (if there is any) is taken to determine the color of the pixel:

The pixel array is drawn as bitmap in the rendered view window:

Cameras 135

© 2001 Wolfgang Theiss

The Parameters menu command opens the following dialog which gives access to the relevant
parameters:

The parameters of rendered views are these:
· Observer (x,y,z): Coordinates of the observer position
· Target (x,y,z): The observer looks in direction of the target, i.e. a line drawn from the observation

point through the center of the pixel array will arrive at the target position.

SPRAY136

© 2001 Wolfgang Theiss

· Length vector 1: This is the length of vector 1 (see sketch below). Vector 1 starts in the center of
the pixel array, is perpendicular to the line observer-target and lies in the x-y-plane (i.e. its z-
component is zero), at least if the rotation angle is zero (see below).

· Length vector 2: Length of vector 2 which starts at the center of the pixel array and is
perpendicular both to the line observer-target and vector 1.

· Observer-Screen: Distance between the observer and the center of the pixel array. Changing this
distance you can easily change the viewing field.

· Angle (Rotation): The angle between vector 1 and the x-y-plane. This can be used to rotate the
'camera'. Vector 2 will follow automatically.

· Pixels (vector 1): Number of pixels in the direction of vector 1.
· Pixels (vector 2): Number of pixels in the direction of vector 2.

To avoid picture distortions the ratio of the lengths of vectors 1 and 2 should be the same as the ratio
of the corresponding number of pixels.

Observer

Vector 2

Vector 1

Target

Pixel array

The Draw command starts the computation of the picture. Note that the required computational time
can be significant, in particular if you work with a high number of pixels. For 600 by 600 pixels
SPRAY needs to determine 360000 closest hit points.

Cameras 137

© 2001 Wolfgang Theiss

With the commands 1, 5 and 20 you can send 1, 5 or 20 test rays through the scenery. SPRAY
performs the ray-tracing and the rendered view draws the path of the rays into the bitmap. The
minimum of the selected spectral range (see below) is taken for the test rays. You can repeatedly use
the test ray commands to create more and more rays in the picture:

SPRAY138

© 2001 Wolfgang Theiss

It is not checked if parts of the rays are hidden by some objects - SPRAY simply draws the
complete paths. Rays that do not hit any object of the scenery and escape to infinity are drawn as
short lines in a different color:

Cameras 139

© 2001 Wolfgang Theiss

If you have opened several rendered views (with different observation points and directions, for
example) the test rays are drawn in each view.

SPRAY140

© 2001 Wolfgang Theiss

7 Simulation options

7.1 Spectral range and angle resolution

The button labeled Parameters in the main window of SPRAY opens the following dialog which
gives access to important simulation parameters:

In the 'Spectral range ' section you can set the spectral range for the ray tracing simulation. Specify
the minimun, the maximum, the number of spectral points and the unit. For the latter you can choose
between 1/cm (wavenumbers), nm (wavelength), eV (energy), micron (wavelength) and THz
(frequency).

The 'Angle resolution' is important for interface objects. These compute (before the simulation is
started) the angular dependence of the reflectance and transmittance using the specified number of
points for the range 0 ... 180 degrees. Usually this does not take too long compared to the
subsequent ray-tracing with possibly many thousands of rays. Hence there is no reason to go to a
low angle resolution unless you have a large number of interfaces in your model.

The 'Number of photons per spectral point' determines how many rays are processed for each
spectral point. How many rays you need depends very strongly on the questions that you have to
answer.

Simulation options 141

© 2001 Wolfgang Theiss

Finally you can set the 'Max. number of interactions' for each ray. After a ray has been emitted by
the light source SPRAY counts how many interactions this ray has with the objects of the setup. If
the specified maximum value of interactions is reached before the ray reaches infinity or is absorbed
the tracing of this ray is stopped. This is to avoid situations where a ray is reflected back and forth
forever between two ideal mirrors, for example. Usually you do not have to change this value unless
you study very special setups.

7.2 How many rays do you need?

Solving problems by optical ray-tracing involves some randomness - consequently there is noise in
the results. The following graph shows an example: The same SPRAY simulation has been repeated
50 times, and the chart shows the detected fraction obtained with 100 and 100000 rays:

Noise level

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 5 10 15 20 25 30 35 40 45 50

Iteration

D
e
te

c
te

d
 f

ra
c
ti

o
n

100 rays/spectral point

100000 rays/spectral point

Obviously, working with more rays reduces the noise and increases the quality of the result. In most
cases you can work with the following simple relations to get an idea of the noise in your SPRAY
results.
Suppose you work with N rays/spectral point, and on the average a fraction f of the emitted rays
reach the detector. Then the amplitude of the noise is about

N

f

Nf

Nf
ff ==D

In the example shown above f is about 0.24 and the expected noise amplitudes are Df = 0.049 for N
= 100 and 0.00155 for N = 100000. For comparison, the standard deviation of the 50 experiments

SPRAY142

© 2001 Wolfgang Theiss

in the case of 100 rays is 0.04122, for 100000 a value of 0.00126 was found. These numbers are in
rough agreement with the noise amplitudes given by the simple formula above, and also with the
'experimental' results.

7.3 Start options

There are two buttons to finally start the SPRAY ray-tracing simulation:

· Simulation: This starts the simulation and blocks all other windows of SPRAY until the
computation has finished. You will see a progress bar indicating the percentage of the work that
has been done already. This is the fastest and safest way to do simulations.

· Simulation (thread): The simulation is started in a separate thread. This way of doing the
simulation is slower compared to the first one. During the computation, SPRAY will react to
mouse clicks and other user actions. You can close or move windows and inspect object data.
However, you should not change any parameters that may have influence on the simulation.

Distributed computing 143

© 2001 Wolfgang Theiss

8 Distributed computing

8.1 Overview

SPRAY simulations may take quite a long time. You can increase the computational speed by adding
the power of several PCs that work together on a SPRAY calculation.
What you need for SPRAY distributed computing is

· several PCs connected by a network
· a common network folder (all PCs must be able to write and read from this folder)
· SPRAY installations on all PCs (the minimal installation without database, tools and help files is

sufficient)
· the NIGHTSHIFT tool running on every PC (this program is installed with SPRAY)
· one 'master' PC which runs SPRAY as distributed computing server.

How it works
On the master PC you load the SPRAY configuration that you want to process. You can start the
distributed computing run either by hand or by OLE automation. SPRAY on the master PC divides
the computational work into several tasks which are stored in a subfolder named 'untouched' of the
common network folder. Thereafter it waits for incoming results in the subfolder 'results' which are
added up to the total solution. If the results for all tasks have been received the simulation is ready.
The NIGHTSHIFT tools on the client PCs constantly scan the network folders for SPRAY tasks. If
a task is detected, a local SPRAY program (started by OLE automation) does the computation. This
activity is indicated by moving the task from the subfolder 'untouched' to the subfolder 'started'.
When the computational work of the task is finished and the task is still present in the subfolder
'started', the results are stored in the subfolder 'results' and the task is deleted in the folder 'started'.
Having processed a task, NIGHTSHIFT looks for another task in the subfolder 'untouched'. If there
is none, it looks for tasks in the subfolder 'started'. Work on tasks in this folder are indicated by the
remark 'Working on pending tasks'.

While SPRAY computations are running on a PC you cannot use the PC for other work because it
is blocked almost completely by the heavy ray-tracing workload. Hence SPRAY simulations using
office PCs should be done at night. With NIGHTSHIFT options you can split a day into daytime
office hours (reserved for the owner of the desktop) and night time (available for SPRAY). At
daytime the normal PC operation is not disturbed by NIGHTSHIFT which is just waiting. At night all
the computational power is used for SPRAY.
The algorithm described above does not require that certain client PCs are available for tasks. Client
PCs can join or leave the distributed computing at any time. If there is no client there is no progress,
if there are many the progress is fast. Only the master PC must be running all the time.

Before you try to work with distributed computing, please read the following sections about the
master PC settings, the tool NIGHTSHIFT on the client PCs and strategy considerations for
distributed computations. A VisualBasic demo shows how to control distributed computing from
Excel.

SPRAY144

© 2001 Wolfgang Theiss

8.2 Master PC

The configuration of the master PC is rather simple. Using the menu command File|Options|
Distributed computing: Network folder you can set the common network folder in a dialog like
the following:

The size of the individual tasks is controlled by the parameter 'rays per task' which you can specify
using the command File|Options|Distributed computing: Rays per task:

Please read the section 'Strategy for distributed computing' in order to make your choice of the
number of rays per task.

This is all you have to configure on the master PC. The settings of the network folder and the number
of rays per task are stored in the SPRAY configuration when you save it. You can now manually
start the distributed computation pressing the button 'Distributed computing' in the main window.
If you control SPRAY on the master PC by OLE automation (for example by Excel's VisualBasic)
the distributed computing is started using the command spray.start_dc_computation (here spray is
the OLE automation object that has been assigned with Set spray =
CreateObject("Spray99.Spray_Remote"). The numbers of rays per task can be set from VisualBasic
as well, e.g. with the command spray.dc_rays_per_task = 30000. (See also the VisualBasic demo
below)

Distributed computing 145

© 2001 Wolfgang Theiss

On the master PC, a short distributed computing run looks like this:

The task separation and the incoming results are logged. The time required for the complete
simulation is given at the end. It is accessible from VisualBasic with the command
spray.seconds_last_run.

8.3 Client PCs: The tool NIGHTSHIFT

On every client PC you must install SPRAY. The minimal installation with the application files is
sufficient. The installation routine copies a small program called nightshift.exe to the SPRAY
directory.
After the installation, start and configure the small tool NIGHTSHIFT:

SPRAY146

© 2001 Wolfgang Theiss

The controls in the upper half of the window are used to tell the program when it is night. At night,
the program starts SPRAY as a hidden OLE automation server and passes tasks to it which are to
be done. The tasks are looked for in the network folder which can be selected after pressing the
Connect button:

During the night, NIGHTSHIFT looks for tasks to be processed (this state is indicated by the green
rectangle to the right).
While a task is processed the color changes to blue:

Distributed computing 147

© 2001 Wolfgang Theiss

Working on pending tasks is indicated white. During the day NIGHTSHIFT looks like this:

If you like you can show the SPRAY server running in the background by pressing the Show
SPRAY button. The server is hidden again if you press Hide SPRAY.

The settings of the NIGHTSHIFT program are stored in the file nightshift.ini located in the program
directory (where the program file nightshift.exe has been installed to) when you close the program.
The settings are read at program start.

8.4 Strategy for distributed computing

Once you have configured the common network path and SPRAY has been installed on all client
PCs, everything is ready for distributed computing with SPRAY. The performance of the network
depends on the speed of the individual computers and the size of the tasks. The following remarks
can be used as a guideline for your own network experiments.

In addition to the numerical work to be performed for the ray-tracing the processing of the tasks

SPRAY148

© 2001 Wolfgang Theiss

requires some extra time. The creation of the tasks on the master PC, the search for tasks on the
client PCs and the exchange of configuration files and results cause a delay of a few seconds for
every task. If a local computation on the master PC takes 10 seconds, and you split it up into 50
tasks to be processed in the network, it can easily take several minutes until you get the final result.
Distributed computing is faster than local computing only if you have large simulation jobs and not
too many tasks.
On the other hand, the number of tasks should not be too small. If you employ various computers
which may differ in speed you should try to keep them all busy. If the individual tasks are too large
the slow PCs will probably never give a useful contribution: While a slow PC is working on a too
heavy computational load, the faster PCs may run out of work and start to work on the pending task
of the slow PC as well, eventually overtaking it.

Current limitations in distributed computing:
· NIGHTSHIFT cannot stop its SPRAY OLE server properly when the master PC finishes the

distributed computing. Therefore it may happen that a client PC still works on a task of a previous
simulation while the next simulation has been started already. In this case, the results are not
passed back to the master PC (it is checked if the results belong to the current simulation) but the
time of the client PC needed to finish the 'old' task is lost.

· The master PC is not very busy in the case of distributed computing: It creates the tasks and then
just adds up the results. Hence it is useful to start a NIGHTSHIFT program on the master PC as
well in order to make use of its computational power. However, this does not work properly if you
start the distributed computing manually by pressing the button 'Distributed computing'. We are
working on a solution for this problem. If you control the master SPRAY by OLE automation (e.g.
VisualBasic routines in Excel) everything works fine.

8.5 OLE automation demo

The following VisualBasic code shows the control of a simple distributed computing simulation with
SPRAY. Please read the comments that explain what happens.

Sub dc_test()
Dim nr As Long
Dim seconds, signal As Single

 ' Create the SPRAY Ole server
 Set spray = CreateObject("Spray99.Spray_Remote")

 ' Load the configuration
 spray.load_configuration = "c:/temp/dc_test/dc_test.s99"
 ' Show SPRAY

Distributed computing 149

© 2001 Wolfgang Theiss

 spray.Show

 ' Switch off Excel warnings
 ' this avoids the popup message that Excel waits for another application ...
 DisplayAlerts = False

 ' Set the number of rays per spectral point
 spray.photons = 10000
 ' Set the number of rays per task
 spray.dc_rays_per_task = 20000

 ' Start the distributed computing simulation
 spray.start_dc_computation

 ' Wait loop: spray.status is >=0 during the simulation and <0 when the job is finished
 nr = spray.Status
 While nr >= 0
 ' wait for 3 seconds
 Application.Wait Now + TimeSerial(0, 0, 3)
 ' ask SPRAY again
 nr = spray.Status
 Wend

 ' get the time SPRAY needed for the last simulation
 seconds = spray.seconds_last_run
 ' Now you should pick up the results ...
 '.
 '.
 '.

 ' Delete the SPRAY ole server
 Set spray = Nothing

End Sub

SPRAY150

© 2001 Wolfgang Theiss

9 OLE automation

9.1 Overview

SPRAY is an OLE automation server that exports some parameters and actions for external control
by OLE automation clients. This offers very high flexibility to users who are able to develop
programs or macros. In fact, only little programming knowledge is required to perform useful
SPRAY computations.

The examples discussed in the following are coded in Excel's VisualBasic. The combination of a
spreadsheet program with tables and charts and a macro language doing the SPRAY control
operations is very useful for SPRAY work. However, if you do not want to purchase a spreadsheet
program you can also use the Windows Scripting Host (WSH, a free Windows tool by Microsoft)
to run VisualBasic scripts. In addition, OLE servers can be addressed from LabView or any modern
programming language like C++ or Delphi.

The following sections describe the OLE automation features of SPRAY:

· Handling the OLE server
· Simulation parameters
· Object parameters
· Retrieving results
· Video generation

9.2 Handling the OLE server

Registration
Before you can use SPRAY as OLE server you have to start it once manually, i.e. run it using the
corresponding Start menu command or executing the program spray99.exe. At program start,
SPRAY will be registered as the OLE server 'Spray99.Spray_Remote' on your machine.

VisualBasic implementation
In the following the VisualBasic code is in blue whereas all comments are in black.

Declaration:
To use SPRAY in a VisualBasic macro you have to declare it as a public object:
Public Spray As Object

Create the OLE server:
Before you can call SPRAY commands and properties you have to create the OLE server with the
CreateObject command:
Sub create()
 Set Spray = CreateObject("Spray99.Spray_Remote")
End Sub

OLE automation 151

© 2001 Wolfgang Theiss

Loading a configuration:
Once SPRAY is created you can load a SPRAY configuration by assigning a filename to the
load_configuration property:
Sub load_file()
 Spray.load_configuration = "C:\spray2\ole_test.s99"
End Sub

Saving a configuration:
If the SPRAY settings have been modified by OLE automation you can save the configuration by
assigning a filename to the save_configuration property:
Sub load_file()
 Spray.save_configuration = "C:\spray2\ole_test2.s99"
End Sub

Show SPRAY:
The show command shows SPRAY on the screen
Sub show_spray()
 Spray.show
End Sub

Hide SPRAY:
The hide command shows SPRAY on the screen
Sub hide_spray()
 Spray.hide
End Sub

Cleaning up:
To finish your work you should remove SPRAY from memory which is done in VisualBasic the
following way:
Sub destroy()
 Set Spray = Nothing
End Sub

9.3 Object parameters

In order to optimize a setup or to investigate 'strange effects' it is quite helpful to vary a parameter
(e.g. the position of a geometric element) and inspect the change of the detector signals. To do so,
you have to go through the following sequence:

· Set the parameters of the model
· Perform the simulation and compute the detector spectra
· Read the required data and store them in appropriate tables
· Go back and do the next parameter modification

The parameters of SPRAY objects that can be controlled by OLE automation are described in this

SPRAY152

© 2001 Wolfgang Theiss

section. Please tell us if you are missing some items here. Usually we can provide additional OLE
features quite rapidly.

Scatterers:
scatterer_parameter(name:string, parameter:string): float
Using this property you can set or read parameters of scatterers. With name you have to specify the
name of the scatterer, with parameter the property you want to pick. You can set, for example, the
volume fraction by referring to the parameter 'volume_fraction'.
The following VisualBasic line sets the volume fraction of the scatterer named 'Water spheres' to 3%:
spray.scatterer_parameter("Water spheres","volume_fraction") = 0.03

The notation without underscore is also tolerated:
thevalue = spray.scatterer_parameter("Water spheres","volume fraction")

You can retrieve the absorption and scattering probabilities K and S the following way:
thevalue = scatterer_parameter("Water spheres","K at 1000 nm")
thevalue = scatterer_parameter("Water spheres","S at 4.53 eV")

Information about the size distribution
If the scatterer is of type 'Extended Mie scatterer' or 'Fluorescent Mie scatterer' you can get
information about the current radius distribution and manipulate it. Get the number of radii using the
command
number_of_points = scatterer_parameter("Water spheres","size classes")

The 'radius points' are counted 1,2,3, ...
Get the radius of point 7 using the command
radius = scatterer_parameter("Water spheres","radius size class 7")

Get the probability of point 7 using the command
prob = scatterer_parameter("Water spheres","probability size class 7")

Changing the size distribution
When you set the number of points of the radius distribution, the internal data array is initialized with
zeroes:
scatterer_parameter("Water spheres","size classes") = 10

You should now use a loop and set the radius and the probability for all points:
scatterer_parameter("Water spheres","radius size class 1") = 20E-9
scatterer_parameter("Water spheres","probability size class 1") = 0.23

scatterer_parameter("Water spheres","radius size class 2") = 40E-9
scatterer_parameter("Water spheres","probability size class 2") = 0.134

scatterer_command(name:string, command : string, parameter: float)
Use this command to manipulate the size distribution. The following commands are defined up to
now:
Normalize the distribution: scatterer_command("Water spheres","Normalize",0)

Shift the radius values of the distribution (by 20 nm, in this example): scatterer_command("Water

spheres","shift radius distribution",20e-9)

Multiply the radius values of the distribution (by 1.1, in this example): scatterer_command("Water

OLE automation 153

© 2001 Wolfgang Theiss

spheres","multiply radius distribution",1.1)

scatterer_load_rt(name : string) : string
Passing a filename to this property causes the scatterer with the specified name to import RT data
from the specified file.
Here is an example:
spray.scatterer_load_rt("Water spheres") = "C:\mie\water1.rt"

Geometric objects:
object_parameter(name:string, parameter:string): float
Using this general property you can set or read parameters of geometric objects. With name you
have to specify the name of the object, parameter determines the property you want to set or read.
Changing the position (x-coordinate) of a mirror named 'Mirror 2', for example, can be done like
this:
spray.object_parameter("Mirror 2","x") = 14.3

Please consult the description of the individual geometric objects to see which parameters are
available.

object_parameter_string(name:string, parameter:string): string
Using this property you can set or read string parameters of geometric objects. With name you have
to specify the name of the object, parameter determines the property you want to set or read.
Changing the formula of a user-defined surface shape named 'My shape', for example, can be done
like this:
spray.object_parameter_string("My shape","surface_formula") = "0.3+0.3*(sin(0.2*x))"

Please consult the description of the individual geometric objects to see which parameters are
available.

Views
In connection with automatic video generation or simply for taking some snapshots of the SPRAY
scenery, rendered views can be modified by OLE automation as well. The command for doing so is
this:
view_parameter(name:string, parameter:string): float
Name specifies the view you want to select, and parameter determines the property you want to
read or set. Here are the parameters that you can access:

· 'observer_x' : x-coordinate of the observation point
· 'observer_y' : y-coordinate of the observation point
· 'observer_z' : z-coordinate of the observation point
· 'target_x' : x-coordinate of the target
· 'target_y' : y-coordinate of the target
· 'target_z' : z-coordinate of the target
· 'vector_1': Length of vector 1
· 'vector_2': Length of vector 2
· 'distance': Distance observation point - center pixel array
· 'angle': Rotation angle of the pixel array

SPRAY154

© 2001 Wolfgang Theiss

9.4 Simulation parameters

The following parameters for the configuration of SPRAY simulations can be set by OLE automation
controllers:

Number of rays/spectral point:
This parameter is set using the photons property (integer). The command
spray.photons = 2000

sets the number of rays/spectral point to 2000. You can read the current value this way:
a_variable = spray.photons

Minimum of spectral range:
Change this parameter using the spectral_min property (float). The command
spray.spectral_min = 435.3

sets the spectral minimum to 453.3 . You can read the current value this way:
a_variable = spray.spectral_min

Maximum of spectral range:
This parameter is set using the spectral_max property (float). The command
spray.spectral_max = 1100

sets the spectral maximum to 1100. You can read the current value this way:
a_variable = spray.spectral_max

Number of spectral points:
The property (integer) 'spectral_points' has to be used when the number of spectral points for
SPRAY computations is to be modified:
spray.spectral_points = 120

The current value of this parameter is obtained this way:
a_variable = spray.spectral_points

Doing the simulation:
Ray-tracing simulations may take a long time. Some OLE automation clients like Excel do not wait
long enough for lengthy computations to be finished, and raise a warning dialog which blocks the
execution of the VisualBasic code. This behaviour completely destroys the automation: You have to
click the OK button of the dialog every 10 minutes or so to continue in the VisualBasic code.
In order to avoid this problem SPRAY creates a simulation thread which does the ray-tracing work
in the background. In the foreground, SPRAY will continue to listen to OLE commands. Hence you
can start the SPRAY simulation, and then let Excel execute a loop until SPRAY has finished its
work. The SPRAY property status gives information about the number of processed rays. If it is
negative, SPRAY has finished the simulation and Excel can close its waiting loop.
The following few VisualBasic lines implement this strategy:

dim rays as long ' variable holding the number of processed rays

Spray.start_simulation 'Start the SPRAY simulation
Do
 Application.Wait Now + TimeSerial(0, 0, 2) 'Excel waits for 2 seconds

OLE automation 155

© 2001 Wolfgang Theiss

rays = Spray.Status 'Excel reads the number of processed rays
Application.StatusBar = rays 'Excel indicates the number of rays in the

status bar
Loop While (rays > -1) 'Loop finished if SPRAY has done its work

You could now start routines that readout the results from detectors or screens.

9.5 Retrieving results

Having done SPRAY simulations controlled by OLE automation or manually; you can use the
following commands to get access to detector signals.

Simple rectangular detectors
simple_detector_value(name : string, specpos : float) = float
Here you have to specify the name of the detector object and the spectral position. The latter must
be given in wavenumbers (i.e. the inverse wavelength, measured in 1/cm). You will get back the
detected fraction of the detector at this spectral point.
VisualBasic example:
result = spray.simple_detector_value("Backside detector",12500)

Array detectors
array_detector_value(name : string, pixel, specpos : float) = float
Parameters of this function are the detector name, the wanted pixel and the spectral position (in
wavenumbers). The pixels are counted from 1 to the number of pixels of the array. The return value
of the function is the detected fraction.
VisualBasic example:
result = spray.array_detector_value("My detector", 14,12500)

Screens
screen_value(name : string) = float
You specify the name of the screen and this function returns the fraction of rays that hit the screen.
Screens add rays independent from spectral positions, i.e. there is no frequency information.
VisualBasic example:
result = spray.screen_value("Side")

9.6 Video generation

9.6.1 Video generation

With SPRAY, OLE automation and the third party shareware tool 'Platypus Animator' you can
automatically generate videos like a flight around or through your scenery. Controlled by OLE
automation, SPRAY computes the required pictures which are finally composed to a video sequence
by the Platypus Animator program.
The following page shows a small and simple example. Note that the video download may consume
quite some time ...

SPRAY156

© 2001 Wolfgang Theiss

The following OLE commands are useful for picture and video generation:

Computation of view pictures
The command start_grafx performs the computation of all rendered view pictures. In VisulBasic,
the line
spray.start_grafx

will do this.

Modifying pictures
Once the view pictures are generated you can modify them with the following commands.

The command test_ray (no parameters) will tell SPRAY to send one test ray (as if you had selected
the 1 menu command in a rendered view). With a loop you can generate as many test rays as you
like:
 For i = 1 To 20
 spray.test_ray
 Next i

You can add some text using the property text(name: string, the_text: string) = position
(integer). Here is an example:
spray.Text("Side", "Specular") = 1

This command adds the text 'Specular' to the picture of the view named 'Side'. Assigning the value 1
(position) places the text in the upper center of the picture. The following values of position may be
used:

1: Top, horizontally centered
2: Bottom, horizontally centered
3: Left, vertically centered
4: Right, vertically centered

Here is an example for position 1:

OLE automation 157

© 2001 Wolfgang Theiss

Saving pictures
The property save_bitmap of type string is used to save the computed view bitmaps. If you pass a
filename to the property SPRAY saves the pictures of the views to the specified filename. The letters
A, B, C, ... are added to the filename in order to separate between the individual views in the list of
views.
The VisualBasic command
spray.save_bitmap = "c:\video\test\sideview"

will create the files sideviewA.bmp, sideviewB.bmp, ... in the directory c:\video\test.

The property save_detector_bitmap(x_pixels, y_pixels : integer, object_name : string) =
filename : string is used to generate a picture with a detector spectrum. The parameters x_pixels
and y_pixels set the size of the bitmap, object_name specifies the name of the detector. The
filename assigned to the property is used for saving the bitmap. The extension .bmp is automacilly
added to the filename.
A VisualBasic command like
spray.save_detector_bitmap(500, 300, "My detector") = "c:\temp\detector1"

creates a picture like the following:

SPRAY158

© 2001 Wolfgang Theiss

The preparation of video sequences can be done best with the following commands:
save_bitmap_auto(filename : string) = frame : integer saves the bitmaps using a name which is a
combination of the string you specify with the filename parameter and the number of the current
picture in the sequence of the video, the frame parameter. Using this command in a loop (with
increasing frame number) generates a sequence of pictures. The loop must count the frames starting
at 0.
After the loop is finished you execute the command write_ini_file(filename : string) = frame :
integer with exactly the same filename as you used in the save_bitmap_auto command. The
parameter frame must be set to the last frame number in the loop. The write_ini_file command tells
SPRAY to create a text files (one for each view in the list of views) which contains information for
the Platypus Animator program. The name of the text files will be composed of the filename
parameter, the letter 'A' for the first view, the letter 'B' for the second and so on, and the extension
.ini .
Finally you have to pass the text files as parameter to the Platypus Animator program. It will create
the video sequences and store it as .avi file.

Here is a complete example of a VisualBasic routine that creates a video sequence:

Public Sub rainbow()
Dim z As Single

For j = 0 To 50
 ' Light source is lifted up
 z = j / 50
 spray.object_parameter("Light source", "z") = z
 ' Compute picture
 spray.start_grafx
 ' Send some test rays
 For i = 1 To 100
 spray.test_ray

OLE automation 159

© 2001 Wolfgang Theiss

 Next i
 ' Add a text (the current height of the light source)
 spray.Text("Side", "Height: " + Format(z, "####0.0")) = 1
 ' save the bitmap
 spray.save_bitmap_auto("c:\temp\rainbow") = j
Next j

' Write the ini-File for the avimaker program
spray.write_ini_file("c:\temp\rainbow") = 50

' call the avimaker program with ini-File as parameter
Call Shell("C:\video\avimaker\AviMaker.exe" + " " + "c:\temp\rainbowA.ini", 1)

End Sub

The result is shown on the next page.

9.6.2 Demo video

This short SPRAY video example shows some test rays travelling through a water sphere. A sharp
light beam first hits the center of the sphere and is then moved up. The video shows rays being
immediately reflected at the air/water surface, transmitted through the sphere, and leaving the sphere
after one internal reflection. The latter are responsible for the appearance of the rainbow.

If you click on the rectangle below and you do not see the video, very likely your PC doesn't
support this video format. Sorry!

SPRAY160

© 2001 Wolfgang Theiss

10 Automated parameter fitting

10.1 Introduction

In order to optimize parameters of SPRAY objects we have integrated a fitting module into the
software. Since the handling of parameter fits is not easy it should be applied by experienced
SPRAY users only.
The following step-by-step example shows how the fit module is used to adjust optical constant
parameters by a comparison of SPRAY simulations and diffuse reflectance measurements.

10.2 Step-by-step example

10.2.1 SPRAY model

The following simple SPRAY model is used to simulate a diffuse reflectance experiment: A circular
(transparent) light source illuminates an interface from air to a solid material (binder). The binder
contains spherical pigments with an absorption band in the visible spectral range. The binder itself
absorbs in the UV. On top is a huge rectangular detector collecting all rays that esape into the upper
halfspace.
Here is a side view of the system not showing the detector:

The optical constants of the pigments are the following:

Automated parameter fitting 161

© 2001 Wolfgang Theiss

They are computed based on a constant and a Kim oscillator:

The scattering and absorption coefficients are computed using an extended Mie scatterer object with
the following result:

SPRAY162

© 2001 Wolfgang Theiss

The corresponding diffuse reflectance spectrum has been computed with 30 spectral points in the
range 300 ... 1000 nm sending 1000 rays at each spectral points:

This spectrum is saved in the file measured_spectrum.std using the standard data format. It will serve
as the 'measurement' in the following fit procedure.

Automated parameter fitting 163

© 2001 Wolfgang Theiss

10.2.2 Starting configuration

The SPRAY model that has been used to compute the 'measurement' is now modified a little: The
resonance frequency of the Kim oscillator is changed from 14000 to 10000 1/cm, the oscillator
strength from 3000 to 1000 1/cm. The absorption and scattering coefficients are now the following:

The diffuse reflectance spectrum is changed too, of course. The spectrum is now calculated with 100
rays per spectral point only in order to speed up the computations in the following parameter fit:

SPRAY164

© 2001 Wolfgang Theiss

This configuration is saved in the file optimize_start.s99 which is distributed with the help file.

10.2.3 Preparing the parameter fit

We can now prepare the parameter fit. Please follow exactly the next steps.

1. Open the fitting module with the menu command Tools|Optimize:

Automated parameter fitting 165

© 2001 Wolfgang Theiss

2. Push the button 'Select fit parameters'. This will open a list which will show all possible fit
parameters. Move down the list until the cursor reaches item 67. Move the cursor to the column
'Active' and change the value by pressing the F4 key. Stop when the state of parameter 67 is
'Active'.

3. Move to line 68 and set the resonance frequency parameter to 'Active' as well.
All other parameters should be set to 'Inactive'.

SPRAY166

© 2001 Wolfgang Theiss

4. Close the list. Another window should popup (if not, push the button 'Show active fit
parameters'). This is a list which displays the parameters that are varied in the fit:

Keep this window open in order to watch the changes of the fit parameters during the optimization.

5. Now press the 'Spectra' button in the SPRAY optimizer window. This opens a list of spectra that
are used to define the target of the fit:

Automated parameter fitting 167

© 2001 Wolfgang Theiss

Up to now, you can only use spectra computed by 'Rectangular detector' objects in SPRAY for a
comparison to measured spectra. In order to fit the spectrum of a rectangular detector just
drag it from the list of geometric objects in SPRAY to the list 'Spectra to be fitted'. In our
case, the window looks like this after drag&drop of the detector object:

6. Use the Edit command to open the spectrum window. With the Range command you have to
select the spectral range for the comparison of measured and simulated spectra:

With the command Receive data you can transfer the current simulated spectrum of the SPRAY
detector object to the spectrum which is used for optimization:

SPRAY168

© 2001 Wolfgang Theiss

7. Now use the Experiment command to open the subwindow which is used to import a measured
spectrum. In this window, use the Import command and load the spectrum from the file
measured_spectrum.std (standard file format):

8. Close the window with the experimental spectrum, and verify that the spectrum window now

Automated parameter fitting 169

© 2001 Wolfgang Theiss

shows both the simulated and the measured spectrum:

The configuration work is done now and we can proceed to the final fit action.

10.2.4 Running the fit

Finally we can start the fit pressing the 'Start fit' button in the optimization window:

SPRAY170

© 2001 Wolfgang Theiss

It will be useful to keep the comparison of the spectra and the values of the fit parameters visible on
the screen.
While doing the fit, your PC will be blocked almost completely, and you should patiently do
something else while the computer works for you.
If one of the parameters changes the properties of one of the extended Mie scatterers, the Mie
computation is done automatically before the SPRAY simulaton is started. This can cause a
significant amount of additional computational effort - you can see the Mie program window flashing
up from time to time in the background.

After a long time, the fit algorithm will stop by itself. However, you can press the 'Stop fit' button
anytime. In this case, SPRAY will finish the current iteration of the fit, load the optimized fit
parameters and re-do the simulation a last time with the best parameters. The fit is finished when you
get the message 'Fit finished!' in the main window.

Automated parameter fitting 171

© 2001 Wolfgang Theiss

Note that the quality and the progress of the fit depends on the 'noise level' of the simulation: If you
take too many rays per spectral point, the optimization will take a very long time. If the number of
rays is too small the noise level is too high, and the optimization will be difficult in the final stages,
because the best values of the parameters may not lead to the smallest deviation between simulation
and experiment. You have to experiment a little in order to find the most efficient balance between
speed and quality.
Finally you should not forget to save the SPRAY configuration with the optimized parameters.

SPRAY172

© 2001 Wolfgang Theiss

11 References

11.1 References

Here are some useful WWW links:

SCOUT technical manual: www.mtheiss.com/docs/scout2/index.html

CODE (Coating Designer) manual: www.mtheiss.com/docs/code/index.html

Data factory manual: www.mtheiss.com/docs/data_fac/index.html

Digit manual: www.mtheiss.com/docs/digit/index.html

Graphics course: This document describes handling and features of 2D and 3D graphics used to
display data in SCOUT, CODE, SPRAY and all other programs developed by M.Theiss Hard-
and Software. It is distributed with printed program manuals.

Platypus Animator: www.c-point.com
This shareware tool made by C Point Pty Ltd creates video sequences from a list of input pictures.

Index 173

© 2001 Wolfgang Theiss

Index
- 2 -
2D 39, 76

- 3 -
3D 39, 76

- A -
a* 67

About SPRAY 11

absorber 43

Absorbing 62, 67, 71, 76

absorption 19, 23, 25, 32, 36, 38, 44, 46, 85

absorption coefficient 27, 47

absorption spectrum 85, 85

Activation 56

activity 11

air/water surface 159

algorithm 19, 143

amplitude 115, 141

angle 38, 90, 99, 151

angle dependence 47

angle distribution 79

angle resolution 47, 79, 140

angles of incidence 9

angular dependence 79, 140

aperture 106

array 71, 76, 85

Array detector I 76

Array detector III 79

Array detectors (OLE) 155

array_detector_value 155

assignment 122

ATR 99

ATR crystal 99

automation 150

automation clients 150

automation server 150

average 141

average volume 38

averaging 9

axis vector 92, 125

- B -
b* 67

background 154

bitmap 134

bitmaps 155

black 67

blue light 79

bottom halfspace 27, 43, 47

box 64, 96, 101, 103

brightness 71

Buttons 11

- C -
C++ 150

camera 134, 134

camera views 56

Cameras 11

CCD camera 71

center 125

charts 150

Circle 89, 113, 122, 125

Circular aperture 106

Circular interface 89

circular light source 32, 62, 79

client PC 143, 145

clients 150

clipboard 67

Closed cylinder 92

Closed volumes 85

clouds 23

cm 21

coating 27, 79

Coating Designer 67

CODE 67

Collect 11, 39, 67, 76

collections of spheres 25

color 11, 67, 134

color coordinates 67

color dialog 56

colors 56

Comments 11

Complex objects 122, 125, 127

Composite scatterers 36

SPRAY174

© 2001 Wolfgang Theiss

composition 36

computational speed 143

computational time 122

concentrator 94

Cone 9, 62, 94, 115, 125

cone angle 60, 62, 79

configuration 147, 150

Connect 145

Continuous scattering media 23

continuum 23

continuum scatterers 43

control operation 150

Converging lens 106

coordinates 122, 125, 127

Copy 56, 127

corner 125

CreateObject 150

critical angle 9

cross product 60, 88

cross section 38

Cylinder 9, 32, 92, 94, 108, 113, 125

cylinders 94

cylindrical surface 92

- D -
D65 67

Data Factory 11, 32, 44, 67, 111

database 11, 22

daytime 143

De-activation 56

Declaration 150

delay 147

Delphi 150

Demo video 159

density 23

design 9

destroy 150

detected fraction 141

detected fraction (OLE) 155

detector 67, 76, 79, 155, 155

detector array 79

detector signal (OLE) 155

detector spectrum 155

detectors 32

dialog 88

dielectric constant 22

dielectric function 22

dielectric functions 25

diffuse 46

Diffuse reflection 44

diffusion 44

diffusor 44

Digit 44

dimensions 85

direction 19, 79

display 67

distance 19, 56, 111, 151

distributed computing 11, 143, 144, 147

distribution 25

distribution of radiation 9

Diverging lens 108

Doing the simulation (OLE) 154

DOS box 27

drag 44

drag&drop 22, 36, 44, 58, 67

Duplication of objects 56

dust 23

- E -
edges 44

efficiency 25

Ellipsoid 101, 125

emission cone 62

energy 32, 140

energy shift 32

examples 11

Excel 127, 150, 154

Export 67

Extended Mie scatterers 27

- F -
F4 122

F5 122

F6 122

F7 122

fiber 113

file formats 67

filename 150

flight 155

fluorescence 19, 32, 36

fluorescent Mie scatterers 36

Fluorescent scatterers 32

Index 175

© 2001 Wolfgang Theiss

focal point 101

focus 103

folder 143

foreground 154

formula 127

forward scattering 79

frame 155

frequency 19, 140

Frequency scan 21

function 111

function key 122

- G -
General scatterer 24, 79

geometric objects 11, 56

Geometric objects (OLE) 151

geometric scenery 134

geometrical objects 85

geometry information 122

geometry objects 85

glass 115

glass brick 96

glass prism 97

graph 76

graphics 11

graphics course 11

grave 85, 85

gray level 71

- H -
halfspace 22, 27

halfspaces 86

Hardware protection 11

Height vector 97

Hide 150

hit 19

hit point 19

host 36

host material 25, 38

How many rays 141

- I -
identification 11

illumination 18

import 24, 122

import RT data (OLE) 151

infinity 140

Information panel 11

infrared spectroscopy 99

inhomogeneities 44

ini 155

initialization 19

inside 85

installation 143, 145

intensity distribution 71

intensity needles 18

interactions 140

interface 9, 22, 43, 43, 44, 46, 85, 89, 122

interface assignment 122

interface objects 43, 140

interfaces 85, 86

Interfacing 21

interference 79

internal reflection 159

inverted 115

isotropic scattering 32

- K -
K 24, 36

- L -
L* 67

LabView 150

Lambertian 44, 46

law of reflection 44

layer 47

layer stack 22, 27, 106

Layer stacks 11, 47

layered spheres 27

LayeredSphere.exe 27

length

unit 21

lens 106, 108

licence information 11

light beam 159

light scattering 36, 58

Light source 58, 60, 64

light sources 58

Linear arrays 76

SPRAY176

© 2001 Wolfgang Theiss

list 36, 56

list of dielectric functions 22

list of interfaces 27

list of materials 85

list of scatterers 23, 36, 43

lists 11

literature data 22

Loading a configuration (OLE) 150

Location 60, 62, 64

- M -
macro language 150

macros 150

macroscopic volume 85

Main window 11

master PC 11, 143, 144

material 22, 85

Materials 11

maximum 140

Maximum (OLE) 154

metafile 67

Mie 25, 27

Mie scatterer 36

Minimum (OLE) 154

minimun 140

mirror 43, 103

mixture 36

Modifying pictures 155

multilayer stack 79

multiple scattering 27, 44, 79

- N -
n(host) 25

nanometer 39

network 143, 144, 145, 147

night 143

NIGHTSHIFT 143, 145

noise 141

noise amplitude 141

noise level 67

Normal Vector 89, 113

normalization 9

Number of rays (OLE) 154

- O -
Object 150

object colors 56

object generation 11

object oriented programing 18

Object parameters (OLE) 151

object_parameter 151

object_parameter_string 151

objects 11, 21, 56, 85

observation point 134

observation window 134

Observer 134

observer_x 151

observer_y 151

observer_z 151

off-axis paraboloid 103

Offset 122

OLE 150, 151, 154, 155, 155, 159

OLE automation 127, 143, 144, 145, 150

OLE commands 154

OLE server 150

Open cylinder 94

open structures 85, 86

optical constant 22, 58

optical constants 23, 25, 47

optical setups 9

optimize 151

Orientation 60, 62, 64, 106, 108

- P -
paint 36

paints 23

Paraboloid 103

parallel beam 103

parallel light 79

Parameters 11, 140

parameters (OLE) 151

particles 25

Paste 127

peak 32, 79

pending task 143, 145

Perfect absorber 43

Perfect mirror 43

periodic 115

Index 177

© 2001 Wolfgang Theiss

photograph 134

pictures 18, 155

pixel 18, 134

pixel (OLE) 155

pixel array 134

pixels 71, 76

plane 103

plastic 115

Platypus Animator 155

Point light source 58

polarization 19, 47, 133

polarizations 9

Polarizer 133

position 19, 58

positioning text 155

pre-defined interfaces 43, 43, 85

Principle 18

print 67

priority 19, 56

Prism 97

probabilities 36

probability 23, 27

progress bar 11, 142

projection 133

propagation direction 18

Properties 44

pyramid 115

- Q -
quantum efficiency 36

queue 19

- R -
Radiation Transfer 24

radius 27, 89, 90, 90, 92, 94, 106, 106, 108, 113,
125

radius distribution 25

radius vector 125

rainbow 79, 159

random number 133

randomness 141

ray 23, 47

ray tracing 18

Ray vector 62

rays 9, 23, 134, 141, 154

Rays per task 144

Ray-tracing 21

rectangle 60, 71, 86, 96, 99, 106, 111, 122, 125,
133

Rectangle points 125

rectangular box 85, 96, 101, 103

Rectangular detector 67

rectangular detector (OLE) 155

Rectangular interface 86

Rectangular light source 60

red light 79

re-emission 32

reflectance 9, 44, 46, 47, 140

reflection 23, 46

refraction 23, 79, 86

refractive index 25, 38, 79, 99

Registration 150

Rendered view 134

Rendered views 134

resolution 71, 79

results 143

Retrieving results 155

RGB 67

Rotation 134

RT data 39, 151

RT file 24

RT file format 38

RT files 79

rt-files 25

RTMIE 25

- S -
S 24, 36

save_bitmap 155

save_bitmap_auto 155

save_detector_bitmap 155

Saving a configuration (OLE) 150

Saving pictures (OLE) 155

scattered radiation 79

scatterer 23, 24, 25, 32, 36, 58, 58

scatterer_load_rt 151

scatterer_parameter 151

scatterers 27, 43, 79

Scatterers (OLE) 151

scattering 23, 25, 32, 36, 38, 44, 79

scattering angle 23, 44

scattering coefficient 27

SPRAY178

© 2001 Wolfgang Theiss

scattering event 23

scattering media 23

scattering particles 38

scattering probabilities 39

scenery 134

SCOUT 9, 11, 21, 22, 47

scratches 44

screen 9, 71, 150

screen fraction 155

screen_value 155

Screens (OLE) 155

scripts 150

server 143, 150

shape 23, 111, 115, 122

shift key 56

Show 150

silicon prism 99

silicon wafer 85

simple_detector_value 155

simulation of optical devices 18

simulation of pictures 18

simulation parameters 11, 140

Simulation parameters (OLE) 154

simulation thread 154

Simulaton 11

sine 115

single scattering 38, 79

sinusoidal surface 111

size 25

size distribution 27

sky 79

slider 39, 67, 71

small particles 44

smooth interface 44

Source DF 25

spectral distribution 36

spectral points 79, 140

spectral points (OLE) 154

spectral position 85, 155

Spectral range 36, 67, 134, 140

spectral range (OLE) 154

spectral unit 25

spectrum 67

Specular 44, 46

Specular and diffuse 46

speed 143

Sphere 23, 25, 43, 79, 90, 90, 115, 122, 125

sphere segment 79, 90, 106, 108

spheres 27

Spherical detector arrays 79

SPRAY algorithm 32

SPRAY tutorial 11

Spray_Remote 150

spreadsheet program 150

standard deviation 141

Start options 142

Start simulation 11

start_grafx 155

status 154

Stop 11

Strategy 147

subfolder 143

Subobject 125

subobjects 122

sun 79

sunlight 79

surface 43, 47, 85, 113, 115

surface normal 60, 62, 67, 71, 76, 88, 96, 97, 125

surface_formula 151

surrounding material 58

surrounding medium 79

symmetriy axis 92, 108

symmetry axis 90, 103, 106

- T -
tables 150

Target 134

target_x 151

target_y 151

target_z 151

tasks 143

test rays 134, 134

test_ray 155

text 155

text files 122

texture 115

textured surface 85

Thickness 47, 108

thin film 85

thread 142, 154

tolerance 19

Tools 11

top halfspace 27, 43, 47

total reflection 9

transmittance 9, 44, 46, 47, 140

Index 179

© 2001 Wolfgang Theiss

transparent 58, 79

Triangle 88, 97, 122, 125

tutorial 11

- U -
unit 140

USB port 11

user dialog 21

user-defined interfaces 43, 85, 99

User-defined surface 111, 113

user-defined surface shape 151

- V -
vector 125

vector 1 60

vector 2 60

vector graphics 67

vector_1 151

vector_2 151

version 2 11

video generation 155, 159

video sequence 155

view 134

View Data 67

view pictures 155

view_parameter 151

View_RT 24, 38, 39

views 11, 39, 56, 134

Views (OLE) 151

virtual reality 18

visible 67

VisualBasic 127, 150, 150

volume 38

volume fraction 24, 25, 27

Volume light source 64

volume_fraction (OLE) 151

voxel 85

- W -
W(Q) 24

waiting queue 19

water 79

water film 27

water sphere 159

wavelength 79, 140

wavenumber 38, 39

wavenumber range 25

wavenumbers 140, 155

white 71

Windows metafile 67

Windows Scripting Host 150

Workbook 25, 27, 32, 67, 76, 122, 127

write_ini_file 155

WSH 150

- X -
X 67

x-coordinate 58

- Y -
Y 67

y-coordinate 58

- Z -
Z 67

z-coordinate 58

Endnotes 2... (after index)

SPRAY180

© 2001 Wolfgang Theiss

Back Cover

	Introduction
	About SPRAY
	Overview
	Why using spectral ray tracing?
	How to find how it works
	The new user-interface of version 2.4
	SPRAY algorithm
	Principle
	Simulation logic
	General properties of SPRAY objects

	Optical constants
	Optical constants

	Scatterers
	Overview
	General scatterers
	Mie scatterers
	Extended Mie scatterers
	Fluorescent scatterers
	Fluorescent Mie scatterers
	Composite scatterers
	The RT file format
	The View_RT utility

	Interfaces
	Overview
	Pre-defined interfaces
	Ideal diffusor
	Specular and diffuse reflection
	Layer stacks

	Geometric objects
	Overview
	Light sources
	Overview
	Point light source
	Rectangular light source
	Circular light source
	Volume light source
	Complex light source

	Detectors
	Surface detectors
	Rectangular detector
	Screen
	Arrays
	Linear array
	Spherical detector arrays

	Volume detectors
	Grave
	Cemetery
	Absorbing material

	Interface objects
	Overview
	Rectangular interface
	Triangle
	Circle
	Sphere
	Sphere segment
	Cylinder (closed)
	Cylinder (open)
	Cone
	Rectangular box
	Prism
	ATR crystal
	Ellipsoid segment
	Paraboloid segment
	Circular aperture
	Converging lens
	Diverging lens
	User-defined surface: Rectangular basis
	User-defined surface: Circular basis
	Periodic surface texture
	Complex objects
	Complex objects: Introduction
	Complex objects: Subobject types
	Complex objects: Creating input data
	Importing objects from CAD programs

	Special objects
	Overview
	Polarizer

	Cameras
	Overview
	Rendered view

	Simulation options
	Spectral range and angle resolution
	How many rays do you need?
	Start options

	Distributed computing
	Overview
	Master PC
	Client PCs: The tool NIGHTSHIFT
	Strategy for distributed computing
	OLE automation demo

	OLE automation
	Overview
	Handling the OLE server
	Object parameters
	Simulation parameters
	Retrieving results
	Video generation
	Video generation
	Demo video

	Automated parameter fitting
	Introduction
	Step-by-step example
	SPRAY model
	Starting configuration
	Preparing the parameter fit
	Running the fit

	References
	References

